第一篇:真分数与假分数教学反思
05也是真分数?
——《真分数和假分数》教学反思
前不久,我执教了人教版小学五年级数学下册《真分数和假分数》一教学内容,重点是让学生理解真、假分数的概念和特征。由于学生对前几节内容掌握得比较好,所以在本堂课中学习得也很轻松。当教学完真分数的概念和特征后(分子比分母小的分数叫真分数,真分数小于1),我随机出了一道题目让学生完成,以检测学生对该知识点的学习情况:
当()5是真分数时,()里面可以填哪几个数?
学生看完题目之后,由于对该知识点掌握得比较好,很多学生毫不犹豫地举起了自己的小手,这让我感到很高兴。于是,我示意一个女生起来回答,她说可以填1—4这4个数字;我又示意另一个平时不太爱回答问题的男生来回答,他的结果和前一位同学的一样,我又追加了一个问题:“你认为为什么要填1—4这4个数字呢?”他的回答也很清楚:“()5要是真分数,也就是分子必须小于分母,所以只能填1—4这4个数字。”
当我正准备把掌声送给这两位同学的时候,忽然,下面“冒”出了一个“不和谐”的声音:“不对,这里还可以填0。”我纳闷了:“怎么会呢?难道是我没有听清楚。”按照以往的惯例,我总会这样对学生说:“根据真分数的概念和特征,我们就能知道这里只能填1—4这4个数字。”但是,我们有这样做。因为这是一个平时不太爱表现的孩子,我想,他这样讲,总应该有他的理由。于是,我示意他站了起来,其他同学也瞪大了眼睛。
师:“你为什么觉得这里还可以填0呢?”
生:“因为根据真分数的概念,分子小于分母,0比5小,所以可以填0。”
师:“你见过分子是0的分数吗?”
生:“没有。但是,我们在学习分数与除法的关系时,只规定了一个分数的分母不能为0,而没有规定分子不能为0。所以我认为它也是有意义的。”
一时间,我都被他的回答给搞懵了。这时,我的大脑里闪过一句话“平常我们都没有遇见分子是0的分数,所以这里不能填0”。忽然,我想到了学生的最后一句话:“所以我认为它是有意义的。”我不妨从分数的意义上去试一下,或许会有意想不到的结果呢?
师:“那请你说一说的意义。”
50生:“把单位“1”平均分成5份,一份也不表示,就好像把一个饼平均分成5份,我一份也没吃一样的。”
师:“什么样的数可以用分数来表示呢?”
生:“一个物体、一些物体等都可以看成是一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。”
师:“对。这里讲的是这样的一份或几份都可以可以用分数来表示,至少应该表示几份?”
生:“1份。”
师:“那表示的是几份?”
50生:“一份也没有。” 师:“那这里能填0吗?” 生:“不能。”
经过这一系列的对话后,我认为这个问题算是解决了。但我的心却久久不能平静:这么重要的一个问题,差一点就因为我的疏忽给埋没了。下课铃一响,我马上跑进办公室,和同级的几位老教师交流了我的做法,他们一致认为,这种解释比较合理。至此,我心中的石头总算是落了下来。
我们平常总是埋怨自己班的学生不够聪明,发言不够精彩,现在看来,该反思的是我们自己了。
课堂教学中,瞬间出现的意外的确让教师始料未及。这时,如果我们静下心来,倾听学生的提问,就会发现,他们提出的问题中,也许很多都偏离了教学目标,与预设的路径相差甚远,甚至是错误的。虽然他们都偏离了,但从长远看,它们却是对学生进行思维训练的极好的教学资源。
有人说,教学是一门遗憾的艺术,也有人说,教学的艺术在于教师把握“预设”与“生成”的艺术,通过“预设”促成“生成”,通过“生成”去完成“预设”。这就需要我们每一位教师都必须有冷静的头脑、机智应变的能力,把这些在课堂上生成的资源变成宝贵的教学资源,引领学生的学习,发展学生的能力。
第二篇:《真分数和假分数》教学反思
今天教研组活动,我执教了《真分数和假分数》一课,上完课我和学生都觉很快乐,学生的探究意识和探究能力着实让我开心和兴奋。
本课我主要采用自主探究、合作交流的教学方法,在教学中为学生提供充分的探索与交流的时间,让学生在观察、操作、分类、比较、交流等活动中,自己概括出真分数和假分数的意义。因为真分数和假分数是一节概念教学课,概念的形成是认识的发展过程。在教学真分数和假分数时,首先,放手让学生自主探究涂色表示分母是4的分数,重点在表示4/5上,再通过比较分数的分子和分母的大小和引导观察图形的涂色部分,以及学生根据分数的意义理解假分数与真分数的内在联系,对这些分数进行分类、比较,并在小组中交流自己的想法,从而形成表象,进而以归纳的方式抽象出真分数和假分数的本质属性,理解概念,牢固地掌握概念,正确地运用概念。同时学生通过自主探索与合作交流,提升了思维水平,提高抽象、概括等能力,而在整个教学过程中教师只是个学习的组织者、引导者与合作者。从学生练习反馈来说,学生对真分数和假分数意义掌握不错,能正确区分真分数和假分数,从而达到这节课的目标。
除了为学生的探究意识和能力而欣慰。同时也对本节课进行了反思,有一下三点遗憾:
1.表示4/5时,理解假分数的单位“1”时,1个单位“1”无能为力时,需要2个单位“1”,课前孩子们准备的圆形纸片一样大,单位“1”大小一样,但为了进一步理解,我课前准备了不同大小的单位“1”,进行辨析,加深认识,但课中忘记了这一环节。
2.课有前松后紧的现象,练习的较少。可能是孩子们动手操作较慢,有些耽误时间。今后要加强动手操作能力的培养.3.评课时老师们提的共同的建议是要尊重孩子的思维,不要急于打断孩子们的发言。确实是这样,当孩子的回答没让自己满意,就犯急,我们应尊重孩子的思维,允许孩子们有不同的想法,允许孩子们犯错。
第三篇:真分数和假分数教学反思
《真分数和假分数》教学反思
本节课我采取合作探究与自主学习相结合的教学方式,重视学生对概念的建构和理解过程,其教学设计有以下几个特点:
一、多种教学策略和方法的融合,引导学生经历概念的建构过程。
富有实效的课堂教学,往往是多种教学策略的有机融合,本节课的教学中,主要凸显了以下几种教学策略:
1、关注学生知识起点,有效激疑。
孩子对于分数的了解并不是一无所知的,因此在课的伊始,从学生熟知的分数入手,并借助于这个可待定分数,不仅可以唤起学生对所熟悉的部分与整体关系的分数的回忆,同时又可类推出分子比分母大的分数,这种分数的出现,为下一环节的学习和探究创设了问题情境,引起了认知矛盾冲突,有效的激活了学生思维和学习兴趣。
2、把握教材设计意图,探究释疑。
纵观整个章节的编排体系,真分数、假分数内容教材的编排意图,除了让孩子们了解真分数与假分数的概念外,更重要的是让学生跳出前面在分数认识中形成的“分数表示部分与整体关系”这一思维,形成分数也表示两个量之间的份数关系,所以在让学生感知如何用圆中的阴影来表示时,根据学生已有的经验基础,通过充分的交流、讨论,有效的突破了单位“1”的限制,让学生明白分子比分母大的分数,其表示的具体量已超过了单位“1”,需要再增加这样的一份,借助于教师有效的引领,让学生明白了单位“1”的大小、平均分成的份数与分数有着密不可分的关系,再次强化了二者的重要性。之后,一个有效地设问,把谁看作单位“1”?充分估计到了学生认知上的误区,通过对比、观察、辨析,让学生深刻感悟到了同样的图形,单位“1”的不同,得出的分数竟存在如此大的差异,从而强调了单位“1”的重要性。至此,借助于一波又一波的矛盾冲突和问题情境,在无疑—有疑—释疑中深化了学生思维,加深了学生对假分数意义的理解和体验,增强了学生的思辨意识,有效的突破了难点。
二、重视数形结合,渗透数学思想方法。
教师注重了通过图形语言揭示概念的意义和特征。教学中,教师引导学生借助于圆形图和数轴,将“图”与真分数、假分数的特征相对照进行解释、分析和说理,使学生在观察和对比中感悟概念的意义和特征,体会数形结合在解决问题中的便捷性、科学性的优势。
三、练习设计注重坡度和梯度,有效提升了学生的思维水平。
本节课教师根据学生实际,设计了三个不同层次的练习。第一个层次,基础练习,主要是让学生巩固对真、假分数的认识。第二个层次,提高性练习,考虑到学生在数轴上描点是个难点,有意识的将它分解为几个层次,先是判断真、假分数,接着借助于对单位“1”的认识引入数轴,然后让学生猜测真、假分数在数轴上的位置,随后在老师的引导下共同描点。这个题目囊括了本节课相关的所有知识点,将它们有机地联系在了一起,同时进行了有效提升和难点的突破。第三个层次,开放性练习,首先是让学生在繁杂的分数中按照一定的观察顺序发现规律,接着让学生接触不确定因素:(a≠0),a<6时,是真分数,a≥6时,是假分数。(a≠0),a>6时,是真分数,a≤6时,是假分数。(a≠0、b≠0),a>b时,是真分数,a≤b时,是假分数。为的就是将学生思维不断提升,从形象的呈现分数判断到学生形成抽象的符号化思想。整个练习的设计由易到难,由具体到抽象,层层递进,体现了循序渐进的原则,符合学生的认知规律。
总之,本节课的教学设计充分体现了学生的主体作用,为学生提供了合作交流、自主探究的学习环境,由表及里、由直观到抽象,加深了对真分数、假分数意义和特征的认识,建立了完整的分数概念。既有效地关注了过程性目标的达成,同时又将教师的“引”与学生的“学”有机的融合在一起,促进了学生的发展和对知识的建构。
第四篇:真分数与假分数
【教学内容】
人教版《义务教育课程标准实验教科书数学》五年级下册第69页
【教学目标】
1、认识真分数和假分数,理解真分数和假分数的意义,掌握真分数和假分数的特征,能辨别真分数和假分数。
2、在观察、比较、分析、概括、猜想、验证等学习活动过程中,有条理、有根据地思考、探究问题,渗透数形结合的数学思想,并培养学生的抽象概括能力。
3、感受主动参与、合作交流的乐趣,培养学生自主探索的学习习惯,乐于探究的学习态度。
【教学重点】真分数和假分数的意义和特征。
【教学难点】假分数意义的理解和把分数用直线上的点来表示。
【教学准备】多媒体课件
【教学流程】
一、合作交流中学
1、创设问题情境:
(1)出示□/4,这个分数有可能是四分之几?
(学生任意说出分母是4的分数。如:、、、、,)
(2)学生用圆上的阴影部分来表示这些分数:
(学生可能会表示出、、、)
2、自主探究:
怎样用图来表示呢?(让学生通过自主探究发现一个圆不够,从而产生矛盾冲突,要解决这个矛盾,还需要这样的一份。通过观察,理解 是把一个圆看作单位1,平均分成4份,表示这样的5份。如果学生错误理解为 是把两个圆看作单位1,老师再准备一套同样的图加以对比。从而更加清楚 的意义。突破本节课的难点。)
3、利用对 的理解,用分数表示图中的阴影部分。
()()()()
【评析:整个环节,对课堂教学进行了充分的预设,从学生已有的经验和知识背景出发,精心设疑,提供给学生自主探索的机会,引导学生通过观察、比较、辨析等一系列的学习方法,巧妙地打破了学生原有的思维定势,有效突破了难点。】
二、观察比较中得
师:老师请你观察这些分数,你能不能按照一定的标准给这些分数分分类。先在小组里交流一下想法。
1、自主分类:四人小组讨论分类方法。
2、生汇报分类情况,可能出现:
(1)按分母相同和不同来分;
(2)按分子与分母关系分:分子比分母小;分子比分母大;分子等于分母。
(3)按分子能否是分母的倍数分。
(师根据学生回答把第二种分类方法板书在黑板上)
师:今天这节课我们就重点研究按照分子与分母的大小关系进行的分类。其实这些分数在数学上都有各自的名字,想知道吗?
3、学生自学课本第69页。
4、交流真分数和假分数的意义:
师:从书上你都了解到什么?
(1)在数学上把分子比分母小的分数叫做真分数,真分数小于1。
(2)分子比分母大的或分子等于分母的分数叫做假分数,假分数大于或等于1。
这就是我们这节课所认识的真分数和假分数。(板书:真分数和假分数)
5、交流真分数和假分数的特征并说明理由。(结合图想一想)
[评析:让学生按照自己的标准将复习中的分数进行分类,突出了本节课的重点。采取让学生自学的方法,得出什么是真分数,什么是假分数。然后引导观察实物图,比较真分数、假分数的值与1的大小关系,从而掌握真假分数的特征。这一环节的设计充分发挥学生的学习主动性,培养学生的学习意识,提高学生的观察、分析和概括能力。]
三、巩固练习中提升
1、基础练习:
(1)、举一些分数,生抢答是真分数还是假分数。判断一个分数是真分数还是假分数关键要看什么?
(2)、判断(师口述)
①真分数都比1小。()
②假分数就是分子比分母大的分数。()
③妈妈买了一个月饼,小明一口气吃了 54 个。()
【评析:这两题是基础练习,主要让学生进一步巩固对真分数和假分数的认识】
3、提高练习:把下列分数用直线上的点表示:
学生直接在直线上描点困难很大,为了更加有效加深认识和提升,我把这道题有梯度的呈现。
(1)判断哪些是真分数,哪些是假分数?
(2)出示动态的数轴,(让学生加深对单位1的理解。)
(3)猜测真分数和假分数在直线的位置。
(4)在直线上描点(进一步抽象对真分数假分数意义的理解)
(5)通过观察,验证前面的猜测(使学生直观地看到真分数集中在0---1之间的这一段上,而假分数则分布在从1开始向右的部分,进而体会到与先前的认识一致:真分数小于1,假分数大于或等于1.进一步加深对真分数和假分数特征的认识,同时渗透猜测、验证的数学方法,也培养了学生严谨的学习态度。)
【评析:这个题目囊括了本节课相关的所有知识点,将它们有机地联系在了一起,同时进行有效地提升和难点的突破。】
4、不定性开放题:(出示表格,学生观察,教师指导方法)
1/2 2/2 3/2 4/2 5/2 5/2 6/2 7/2 8/2 9/2 10/2
1/3 2/3 3/3 4/3 5/3 5/3 6/3 7/3 8/3 9/3 10/3
1/4 2/4 3/4 4/4 5/4 5/4 6/4 7/4 8/4 9/4 10/4
1/5 2/5 3/5 4/5 5/5 5/5 6/5 7/5 8/5 9/5 10/5
(1)学生可能会发现表格中的真分数和假分数。
(2)可能找出每一行中特殊的假分数。
(3)进一步观察真分数,看有什么发现?(真分数的个数比它的分母小1)
(4)按行观察:每一行分数的分母都相同。用一个分数表示所有分母是6的分数:(a是非0自然数)思考:当()时,是真分数,当a()时,是假分数。
(5)按列观察:用一个分数表示第六列所有的分数吗?
(是非0自然数)思考:当()时,是真分数,当()时,是假分数。
(6)用一个分数表示所有的分数:
(、b是非0自然数)思考: 是真分数还是假分数?
【评析:该练习加强了学习方法的指导,培养了学生观察、分析、概括等能力。在含有字母的分数中,让学生接触不确定因素,为的就是将学生思维不断提升,从形象的呈现分数判断到学生形成抽象的符号化思想。】
【评析:整个练习的设计由易到难,使不同层次的学生能够得到不同的锻炼,既巩固了新知,又深化了新知。】
四、总结回顾中延伸
1、畅谈本节课的收获。
2、对本节课自我评价。
课堂闪亮星
评价内容
认识并理解真分数和假分数的意义 掌握真分数和假分数的特征 认真倾听
别人发言 与同伴合作
积极思考问题
自我评价
【评析:该环节是梳理新知,对照目标,反馈评价,提高教学效益,培养学生归纳小结的良好习惯。】
【板书设计】
真分数和假分数
真分数: 分子比分母小的:(小于1)
分子等于分母的:(等于1)
分子大于分母的:(大于1)
【评析:将本节课的知识点以科学、合理、简捷的结构呈现出来。突出了本节课的重点,便于学生回顾和梳理所学知识,起到了画龙点睛的作用。】
【设计思路】
学生在三年级已有了初步认识分数的经验基础,但那时主要是从部分与整体的关系角度来学习的,认识的分数都是真分数,而现在,引入了假分数,这就需要学生打破原有的认知结构。但又因真分数在学生心中根深蒂固,而假分数表示什么?在单位1不够取的时候怎样理解?在生活中假分数又有怎样的现实意义,学生并不明白。因此,建构对假分数意义的理解是个关键,同时也是难点。教学中引导学生经历感受和体验概念的建立,结论的探索过程显得尤为重要。
而本节课的设计就是从学生已有的经验和知识背景出发,提供给学生自主探索的机会,让他们在经历知识形成的过程中,真正理解和掌握了数学的知识、思想和方法,同时获得广泛的数学活动经验,促进了学生的发展。
在整个的教学过程的设计中,教师充分体现了以学生为本的教学理念,在学生获取新知识的过程中,大胆放手,引导学生自主探索,突出知识的形成过程,使学生对新知识沿着理解、掌握、熟练地过程不断前进,从而获得最佳的教学效果。尤其在 怎样用图来表示?这个环节中,使学生在对比、辨析、不断地矛盾冲突和解决的过程中,加深对假分数意义的理解,从而突破了本节课的难点。还有在给分数分类这个环节中,通过让学生自主分类、说标准,充分发挥学生的自主性。在激烈的小组讨论争辩中,调动了学生学习的积极性,活跃了学生的思维,使学生尝到了自己获取知识的乐趣,充分体会到了学习的乐趣,提高了学生自主探索、合作交流的能力。
本节课自始自终都使学生在充分的信息的相互交织中、不同思路的相互促进中、自育与他育的相互补充中,充分感受与体验知识的发生和发展过程,促进学生的全面发展。
第五篇:真分数和假分数教学反思
真分数和假分数教学反思 赵忠贤
本节课加强了学习方法的指导,培养了学生观察、分析、概括等能力。在含有字母的分数中,让学生接触不确定因素,为的就是将学生思维不断提升,从形象的呈现分数判断到学生形成抽象的符号化思想。整个练习的设计由易到难,使不同层次的学生能够得到不同的锻炼,既巩固了新知,又深化了新知,该环节是梳理新知,对照目标,反馈评价,提高教学效益,培养学生归纳小结的良好习惯。学生在三年级已有了初步认识分数的经验基础,但那时主要是从部分与整体的关系角度来学习的,认识的分数都是真分数,而现在,引入了假分数,这就需要学生打破原有的认知结构。但又因真分数在学生心中根深蒂固,而假分数表示什么?在单位“1”不够取的时候怎样理解?在生活中假分数又有怎样的现实意义,学生并不明白。因此,建构对假分数意义的理解是个关键,同时也是难点。教学中引导学生“经历”“感受”和“体验”概念的建立,结论的探索过程显得尤为重要。
而本节课的设计就是从学生已有的经验和知识背景出发,提供给学生自主探索的机会,让他们在经历知识形成的过程中,真正理解和掌握了数学的知识、思想和方法,同时获得广泛的数学活动经验,促进了学生的发展。
在整个的教学过程的设计中,教师充分体现了以学生为本的教学理念,在学生获取新知识的过程中,大胆放手,引导学生自主探索,突出知识的形成过程,使学生对新知识沿着理解、掌握、熟练地过程不断前进,从而获得最佳的教学效果。尤其在“ 怎样用图来表示?” 这个环节中,使学生在对比、辨析、不断地矛盾冲突和解决的过程中,加深对假分数意义的理解,从而突破了本节课的难点。还有在给分数分类这个环节中,通过让学生自主分类、说标准,充分发挥学生的自主性。在激烈的小组讨论争辩中,调动了学生学习的积极性,活跃了学生的思维,使学生尝到了自己获取知识的乐趣,充分体会到了学习的乐趣,提高了学生自主探索、合作交流的能力。
本节课自始自终都使学生在充分的信息的相互交织中、不同思路的相互促进中、自育与他育的相互补充中,充分感受与体验知识的发生和发展过程,促进学生的全面发展。