第一篇:初中数学说课稿:人教版七年级下《实际问题与一元一次不等式》优秀说课稿范例
初中数学说课稿:人教版七年级下《实际问题与一元一次不等式》优秀说课稿范例
各位老师:
大家好!
我是××××××,我很珍惜这次难得的学习机会,恳请老师对我的说课提出宝贵意见.我说课的内容是人教版实验教材七年级下第九章第2节《实际问题与一元一次不等式》的教学设计,下面我分别从教学内容的分析、教学目标的确定、教学方法的选择和教学过程的设计四个方面来说明我对这节课的教学设想。
一、教学内容的分析
1.教材的地位和作用
(1)本节内容,是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础,具有在代数学中承上启下的作用;
(2)通过本节的学习,学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程,体会不等式和方程一样都是刻画现实世界数量关系的重要模型。
(3)在列不等式解决实际问题的探索过程中,引导学生注意估算意识,体会算式结果所对应的实际意义,渗透建立数学模型,分类讨论等数学思想,对提升学生应用数学意识思考和解决问题的能力起到积极的作用。
2.教学的重点和难点
对于用不等式解决实际问题,学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。
根据以上的分析和《数学课程标准》对本课内容的教学要求,本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化,并根据解集和结合实际情况分类讨论得出合理结论。
二、教学目标的确定
根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:
1.能进一步熟练的解一元一次不等式,能从实际问题中抽象出不等关系的数学模型,并结合解集解决简单的实际问题。
2.通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
3.在积极参与数学学习活动的过程中,体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时,与其他同学交流,相互启发,培养合作精神。
三、教学方法的选择
1、教学方法
根据教学内容、教学目标和学生的认知水平,我主要采取教师启发引导,学生自主探究的教学方法.教学过程中,创设适当的教学情境,引导学生独立思考、共同探究,使学生经历将生活中的数和数量关系转化为数学符号的具体建模过程,体会不等式作为刻画现实世界数量关系的重要模型的价值。
2、教学手段
教学中使用多媒体投影、计算机辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的关注和理解,激发学生的学习兴趣.四、教学过程的设计
为了达到本节课的教学目标,突出重点,突破难点,我把教学过程通过两个实际问题逐步深入;最后归纳小结,布置作业.具体过程如下:
1、课题引入:
我们以前已经学过了一元一次方程以及二元一次方程组的解法,并在解决许多实际问题的过程中感受到:将相等关系用数学符号抽象后所得到的“方程”确实是一种有效数学工具,它能让我们的思维过程更加准确和简明!
但是,生活中除了相等的数量关系以外,还存在着大量的不等关系,通过前几节课的学习,我们也已经基本了解了不等式的性质和简单不等式的解法。今天,就让我们通过一些带有选择“决策”意义的实际问题来共同探讨一下一元一次不等式这种数学模型是如何解决生活中的实际问题的。
实际情景1:在为我校初一年级学生选定营养餐的过程中选中了有两家公司.这两家公司某种适合初一学生的营养餐的报价均是是6.5元/份,营养含量和服务承诺也均相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费.结 合新课标对本小节的要求:会用一元一次不等式解决简单的实际问题,我选择的是从数量关系上与教材例题类似的收费问题,并且真实数值与所在年级事情相一致,比书上的例题更能贴近学生的实际生活,引发学生探求的兴趣。特别的,通常此类题目是不给出具体单价的,因为并不影响最后结论,考虑到学生现阶段的数学抽象 仍以识别数量的具体含义为主,所以我在此处添加了单价,并增设了问题一,用以降低抽象思维的梯度,为后续的设未知数的“代数化抽象”作适当的铺垫。
问题(1)请你判断,我们年级580人用餐,应该选择哪家公司能让每位学生的餐费平均算来更低呢?
预案 一:教师应关注学生能否在讨论中认清“每位学生的餐费平均算来更低”所对应的数量意义,将之转化为“付给公司的总金额少”。在此处不排除学生因生活经历的缺乏,而对题目中所隐含的数量关系抽象能力弱。应关注每一位同学的感受,让同学们充分理解交流,扩大参与思考的广度,获得基本抽象思维的生长点。
预案二:在进行甲乙公司所需费用的计算时,会有分部计算和综合计算两种计算形式,对于那些列综合算式的同学,教师应多给予展示机会,从而帮助其他同学整理思路,理解算式的实际含义;为后续的字母抽象做好铺垫。具体计算学生可以合理使用计算器提高课堂速度。
预案三:学生还有可能不通过计算,直接猜测甲公司合算或者乙公司合算,对于这种有可能产生的声音,教师应从估算的角度加以引导。引导学生体会在580人的前提下,超过100人部分(480人)的甲公司是九折乙公司是八折,10%的差距,;100人以内(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明显大于100的10%,所以选乙合算,并引导学生用计算的方法验证估算的准确性。
列式:
选甲公司所需费用:(元)
选乙公司所需费用:(元)
结论:580人时选择乙公司能让每位学生的餐费平均算来更低。
问题(2)你能否用以前学过的知识,在不知道具体人数的前提下制定一套方案,当其他学校的初一年级也想在这两家公司之间进行选择时,不用重复第一题的计算过程,只要知道人数就马上能根据你方案的结论作出决策呢?
结合以前的训练,学生很容易想到要通过设未知数的方法进行符号表达,将非常关键而题目中并未给出的学生人数设为未知数。由于本题的具体分析过程仍然是由学生分析讨论完成,可能出现的情况是:
预案一:一部分综合能力较强的同学会根据实际意义直接列出综合算式:或
此处教师应该引导学生观察,在化简不等式的过程中单价并未影响结果(利用不等式性质二将其作为公倍数约去),即:题目中没有具体的单价也不会影响本题的决策。
还可以结合小学单位一的思想化简不等式,引导学生体会并不是题目中出现的所有数量都会影响不等关系,有可能引发学生的关于数量关系的深层次思考。
预案 二:还有一部分学生会因为生活经验少的关系,综合思考能力弱,无法快速的理清数量关系,列出综合算式,思考受阻,教师应引导学生体会在第一题的算式意义的提示下,如何分别列出表达甲乙公司所需总费用的过程量代数式。然后在通过将之用不等号连接的方式,来表达两笔费用的大小,降低因综合性所引起的思维梯度,在过程中让学生体会“分步建模”的思维的条理性。
具体过程如下:(略)
问题(1)如果你是该企业的高级管理人员,请你设计该企业在购买设备时两种型号有几种不同的组合方案;
问题(2)若按固定产量预算企业每月产生的污水量约为2040吨,为了节约资金,应选择哪种购买方案?
实际情景2的选择除涉及“角色扮演”和“环保”等人文因素的考虑以外,在在结合本节的教学目标上还有如下考虑,1、本题取材于真实的实际生活问题,情景中的符号和数量关系较多,不等关系在文字语言的叙述中显得比第一题更加隐蔽,需要学生更深化的思考才能列出算式,是在第一个情景的基础上的扩展和深化。
2、在学生的讨论过程中,教师应注重引导学生体会,用图表表示的数字信息比文字表达更便于观察和有序思考,感受“有序表达”在实际中的价值。
3、结合本题每一个的具体问题的分析和解决,学生必须要从表格中分析筛选相关的有用数据,(例如:在第一问设计方案时未用到“处理污水量”和“年消耗费”,在第二问中未用到“价格”和“年消耗费”)这种分析和筛选的思考经历将有助于加强学生对数据关系的理解和运用能力。
结合以前的训练,在思考问题(1)学生很容易想到要通过设A型或B型设备的台数为未知数的方法顺利的进入用符号表达实际含义阶段
例如:(1)设购买污水处理设备A型 台,则B型(10 –)台,由题意知:+10(10 –)≤10
5在此处,将“限额为105万元”转化为“≤105”是学生要突破的第一关,教师应在次处多展示同学的对“限额为105万元”语言解释,尽可能多的在具有不同经历基础的同学心中将这个抽象过程生活化、自然化。+10(10 –)≤10
5解之得 ≤2.5
因为在实际情景中往往要根据未知数所代表的具体含义为未知数的加一个取值范围的限定,而这个隐含的限制条件往往是学生中所不容易考虑到的,教师应注意引导学生注意这一问题,例如:本题中的 是设备的台数,应用非负整数的限制,所以 可取0、1、2,因此有三种购买方案:
①购A型0台,B型10台;
②购A型1台,B型9台;
③购A型2台,B型8台.此处细节性的思考经历,有助于提高学生在建模过程中更全面的考虑数值的实际意义,促进抽象符号与具体意义在头脑中的融合。
特别的,此处的“0”是学生最容易忽视和丢掉的,教师在此处应重点引导学生思考当“ ”时,往往是企业最可能选的方案,因为不同的设备涉及到不同的维护问题,单一品种的设备往往更便于管理,这种思考有助于发散学生的思维,促进其结合实际作更全面的思考。
问题(2)的思维梯度较前几个问题进一步加大,学生必须理解“节约资金”这个目的的达成 一定是在“完成任务”的前提下的,要先通过对(1)中所得的三套方案是否能完成任务加以讨论和验证,然后再涉及计算哪个方案费用更低的问题
在验证三套方案的可行性时,收思维方式的局限,学生往往会选择逐一列举计算的讨论方式,并且由于数量少,很容易得出答案,教师可引导学生思考,如果满足(1)的方案不是三种,而是三十种呢?三百种呢?除了逐一讨论以外还有没有什么更好的方式能帮助我们迅速缩小范围呢?引导学生将所买设备能否完成任务量转化为如下不等关系:
(2)同(1)所设购买污水处理设备A型 台,则B型(10 –)台,240 +200(10 –)≥2040;
解之得 ≥
1所以在三种取值中确定 的值为1或2
当 =1时,购买资金为:12×1+10×9=102(万元)
当 =2时,购买资金为:12×2+10×8=104(万元)
因此为了节约资金,应选购A型1台,B型9台。
此处的分析和引导有助于学生体会不等式在有效缩小讨论范围时的实际价值。
通过以上问题的解决,学生对不等式和方程一样都是刻画现实世界数量关系的重要模型有了进一部的认识,并感受到不等式确实是从实际问题中提出,又为解决实际问题提供明确的帮助有效数学工具。
归纳小结,布置作业
本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识、技能、方法,深化对数学思想方法的认识,为后续学习打好基础.
第二篇:初中数学人教版七年级下《实际问题与一元一次不等式》优秀说课稿
一、教学内容的分析
1、教材的地位和作用
(1)本节内容,是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础,具有在代数学中承上启下的作用;
(2)通过本节的学习,学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程,体会不等式和方程一样都是刻画现实世界数量关系的重要模型。
(3)在列不等式解决实际问题的探索过程中,引导学生注意估算意识,体会算式结果所对应的实际意义,渗透建立数学模型,分类讨论等数学思想,对提升学生应用数学意识思考和解决问题的能力起到积极的作用。
2、教学的重点和难点
对于用不等式解决实际问题,学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。
根据以上的分析和《数学课程标准》对本课内容的教学要求,本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化,并根据解集和结合实际情况分类讨论得出合理结论。
二、教学目标的确定
根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:
1、能进一步熟练的解一元一次不等式,能从实际问题中抽象出不等关系的数学模型,并结合解集解决简单的实际问题。
2、通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
3、在积极参与数学学习活动的过程中,体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时,与其他同学交流,相互启发,培养合作精神。
三、教学方法的选择
1、教学方法
根据教学内容、教学目标和学生的认知水平,我主要采取教师启发引导,学生自主探究的教学方法.教学过程中,创设适当的教学情境,引导学生独立思考、共同探究,使学生经历将生活中的数和数量关系转化为数学符号的具体建模过程,体会不等式作为刻画现实世界数量关系的重要模型的价值。
2、教学手段
教学中使用多媒体投影、计算机辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的关注和理解,激发学生的学习兴趣.四、教学过程的设计
为了达到本节课的教学目标,突出重点,突破难点,我把教学过程通过两个实际问题逐步深入;最后归纳小结,布置作业.具体过程如下:
1、课题引入:
我们以前已经学过了一元一次方程以及二元一次方程组的解法,并在解决许多实际问题的过程中感受到:将相等关系用数学符号抽象后所得到的“方程”确实是一种有效数学工具,它能让我们的思维过程更加准确和简明!
但是,生活中除了相等的数量关系以外,还存在着大量的不等关系,通过前几节课的学习,我们也已经基本了解了不等式的性质和简单不等式的解法。今天,就让我们通过一些带有选择“决策”意义的实际问题来共同探讨一下一元一次不等式这种数学模型是如何解决生活中的实际问题的。
实际情景1:在为我校初一年级学生选定营养餐的过程中选中了有两家公司.这两家公司某种适合初一学生的营养餐的报价均是是6.5元/份,营养含量和服务承诺也均相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费.结 合新课标对本小节的要求:会用一元一次不等式解决简单的实际问题,我选择的是从数量关系上与教材例题类似的收费问题,并且真实数值与所在年级事情相一致,比书上的例题更能贴近学生的实际生活,引发学生探求的兴趣。特别的,通常此类题目是不给出具体单价的,因为并不影响最后结论,考虑到学生现阶段的数学抽象 仍以识别数量的具体含义为主,所以我在此处添加了单价,并增设了问题一,用以降低抽象思维的梯度,为后续的设未知数的“代数化抽象”作适当的铺垫。
问题(1)请你判断,我们年级580人用餐,应该选择哪家公司能让每位学生的餐费平均算来更低呢?
预案 一:教师应关注学生能否在讨论中认清“每位学生的餐费平均算来更低”所对应的数量意义,将之转化为“付给公司的总金额少”。在此处不排除学生因生活经历的缺乏,而对题目中所隐含的数量关系抽象能力弱。应关注每一位同学的感受,让同学们充分理解交流,扩大参与思考的广度,获得基本抽象思维的生长点。
预案二:在进行甲乙公司所需费用的计算时,会有分部计算和综合计算两种计算形式,对于那些列综合算式的同学,教师应多给予展示机会,从而帮助其他同学整理思路,理解算式的实际含义;为后续的字母抽象做好铺垫。具体计算学生可以合理使用计算器提高课堂速度。
预案三:学生还有可能不通过计算,直接猜测甲公司合算或者乙公司合算,对于这种有可能产生的声音,教师应从估算的角度加以引导。引导学生体会在580人的前提下,超过100人部分(480人)的甲公司是九折乙公司是八折,10%的差距,;100人以内(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明显大于100的10%,所以选乙合算,并引导学生用计算的方法验证估算的准确性。
列式:
选甲公司所需费用:(元)
选乙公司所需费用:(元)
结论:580人时选择乙公司能让每位学生的餐费平均算来更低。
问题(2)你能否用以前学过的知识,在不知道具体人数的前提下制定一套方案,当其他学校的初一年级也想在这两家公司之间进行选择时,不用重复第一题的计算过程,只要知道人数就马上能根据你方案的结论作出决策呢?
结合以前的训练,学生很容易想到要通过设未知数的方法进行符号表达,将非常关键而题目中并未给出的学生人数设为未知数。由于本题的具体分析过程仍然是由学生分析讨论完成,可能出现的情况是:
预案一:一部分综合能力较强的同学会根据实际意义直接列出综合算式:或
此处教师应该引导学生观察,在化简不等式的过程中单价并未影响结果(利用不等式性质二将其作为公倍数约去),即:题目中没有具体的单价也不会影响本题的决策。
还可以结合小学单位一的思想化简不等式,引导学生体会并不是题目中出现的所有数量都会影响不等关系,有可能引发学生的关于数量关系的深层次思考。
预案 二:还有一部分学生会因为生活经验少的关系,综合思考能力弱,无法快速的理清数量关系,列出综合算式,思考受阻,教师应引导学生体会在第一题的算式意义的提示下,如何分别列出表达甲乙公司所需总费用的过程量代数式。然后在通过将之用不等号连接的方式,来表达两笔费用的大小,降低因综合性所引起的思维梯度,在过程中让学生体会“分步建模”的思维的条理性。
具体过程如下:(略)
问题(1)如果你是该企业的高级管理人员,请你设计该企业在购买设备时两种型号有几种不同的组合方案;
问题(2)若按固定产量预算企业每月产生的污水量约为20xx吨,为了节约资金,应选择哪种购买方案?
实际情景2的选择除涉及“角色扮演”和“环保”等人文因素的考虑以外,在在结合本节的教学目标上还有如下考虑,1、本题取材于真实的实际生活问题,情景中的符号和数量关系较多,不等关系在文字语言的叙述中显得比第一题更加隐蔽,需要学生更深化的思考才能列出算式,是在第一个情景的基础上的扩展和深化。
2、在学生的'讨论过程中,教师应注重引导学生体会,用图表表示的数字信息比文字表达更便于观察和有序思考,感受“有序表达”在实际中的价值。
3、结合本题每一个的具体问题的分析和解决,学生必须要从表格中分析筛选相关的有用数据,(例如:在第一问设计方案时未用到“处理污水量”和“年消耗费”,在第二问中未用到“价格”和“年消耗费”)这种分析和筛选的思考经历将有助于加强学生对数据关系的理解和运用能力。
结合以前的训练,在思考问题(1)学生很容易想到要通过设A型或B型设备的台数为未知数的方法顺利的进入用符号表达实际含义阶段
例如:(1)设购买污水处理设备A型 台,则B型(10 –)台,由题意知:+10(10 –)≤105
在此处,将“限额为105万元”转化为“≤105”是学生要突破的第一关,教师应在次处多展示同学的对“限额为105万元”语言解释,尽可能多的在具有不同经历基础的同学心中将这个抽象过程生活化、自然化。+10(10 –)≤105
解之得 ≤2.5
因为在实际情景中往往要根据未知数所代表的具体含义为未知数的加一个取值范围的限定,而这个隐含的限制条件往往是学生中所不容易考虑到的,教师应注意引导学生注意这一问题,例如:本题中的 是设备的台数,应用非负整数的限制,所以 可取0、1、2,因此有三种购买方案:
①购A型0台,B型10台;
②购A型1台,B型9台;
③购A型2台,B型8台。
此处细节性的思考经历,有助于提高学生在建模过程中更全面的考虑数值的实际意义,促进抽象符号与具体意义在头脑中的融合。
特别的,此处的“0”是学生最容易忽视和丢掉的,教师在此处应重点引导学生思考当“ ”时,往往是企业最可能选的方案,因为不同的设备涉及到不同的维护问题,单一品种的设备往往更便于管理,这种思考有助于发散学生的思维,促进其结合实际作更全面的思考。
问题(2)的思维梯度较前几个问题进一步加大,学生必须理解“节约资金”这个目的的达成 一定是在“完成任务”的前提下的,要先通过对(1)中所得的三套方案是否能完成任务加以讨论和验证,然后再涉及计算哪个方案费用更低的问题
在验证三套方案的可行性时,收思维方式的局限,学生往往会选择逐一列举计算的讨论方式,并且由于数量少,很容易得出答案,教师可引导学生思考,如果满足(1)的方案不是三种,而是三十种呢?三百种呢?除了逐一讨论以外还有没有什么更好的方式能帮助我们迅速缩小范围呢?引导学生将所买设备能否完成任务量转化为如下不等关系:
(2)同(1)所设购买污水处理设备A型 台,则B型(10 –)台,240 +200(10 –)≥20xx;
解之得 ≥1
所以在三种取值中确定 的值为1或2
当 =1时,购买资金为:12×1+10×9=102(万元)
当 =2时,购买资金为:12×2+10×8=104(万元)
因此为了节约资金,应选购A型1台,B型9台。
此处的分析和引导有助于学生体会不等式在有效缩小讨论范围时的实际价值。
通过以上问题的解决,学生对不等式和方程一样都是刻画现实世界数量关系的重要模型有了进一部的认识,并感受到不等式确实是从实际问题中提出,又为解决实际问题提供明确的帮助有效数学工具。
归纳小结,布置作业
本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识、技能、方法,深化对数学思想方法的认识,为后续学习打好基础。
【初中数学人教版七年级下《实际问题与一元一次不等式》优秀说课稿】相关文章:
1.数学说课稿《实际问题与一元一次不等式》
2.一元一次不等式的应用说课稿
3.人教版《一元一次不等式》教学反思
4.《一元一次不等式》说课稿
5.《实际问题与一元一次不等式》的教学反思范文
6.实际问题与一元一次不等式教学设计
7.《一次函数与一元一次不等式》说课稿
8.实际问题与一元一次方程说课稿范文
第三篇:《实际问题与一元一次不等式》说课稿
《实际问题与一元一次不等式》第1课时说课稿
北京市楼梓庄中学
张东
尊敬的各位老师:大家好!
今天我说课的内容是《实际问题与一元一次不等式》第1课时,课题选自人教版《义务教育课程标准实验教科书·数学(七年级下册)》.我将从教学目标的设定;教学重点、难点的分析;教学方式与手段的选择及教学过程的设计几方面来阐述我对本节课的教学设计.
一、教学目标
本节课在学习了用一元一次方程解决实际问题、不等式的性质、一元一次不等式的初步解法等知识的基础上,继续结合一些实际问题,重点讨论了两方面内容:
1、如何用一元一次不等式解决实际问题,归纳其基本过程;
2、如何解不等式,归纳解一元一次不等式的一般步骤。从而使学生体会到不等式是解决涉及求未知数取值范围的有力工具,是刻画现实世界中不等关系的一种有效数学模型,既是对已学知识的运用和深化,又为下节一元一次不等式组的学习奠定基础。
在课程标准中,有关本节课的要求是:会解简单的一元一次不等式,并能在数轴上表示出解集;能够根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。
根据《课程标准》对本节内容的教学要求,以及学生的认知水平,制定的教学目标如下:
1列一元一次不等式解决具有不等关系的实际问题 2进一步掌握一元一次不等式的解法
3通过应用一元一次不等式描述不等关系解决实际问题,发展学生由实际问题转化为数学问题的能力,体会不等式是解决实际问题有效数学模型,渗透数学建模思想。
4通过类比一元一次方程解决实际问题的过程以及一元一次方程的解法,体会一元一次不等式中蕴含的类比、化归思想。
二、教学重点、难点
以不等式为工具,分析问题、解决问题是本章的重点,掌握一元一次不等式的解法及解集的几何表示是本章的基本技能,因此,本节课的教学重点为:由实际问题中的不等关系列出不等式,进一步掌握一元一次不等式的解法。由于学生初次接触含有不等关系的实际问题,因此对于如何分析出其中的不等关系,并应用一元一次不等式描述不等关系,从而解决实际问题有一定难度,本节课的教学难点为:不等关系的分析与数学表示。
三、教学方式与手段
在本节课的设计中,从学生已有的生活实际经验出发,通过设置若干个具有层次性、挑战性的探究点,激发学生探究兴趣,教师引导学生在独立思考、互相交流的活动中主动学习、探究学习,并适时恰当地引导、帮助学生找到解决问题的方法。因此,本节课采用的教学方式是启发式教学方式。
教学中利用幻灯片,一方面创设强烈的生活气息,激发学生学习兴趣;另一方面扩大课堂教学容量,节省课堂教学时间,提高课堂教学效率。
四、教学过程
本节课的教学程序分为创设情境、激趣质疑;探究新知、解决问题;巩固训练、加深理解;归纳小结、分层作业四个环节进行.
(一)创设情境、激趣质疑
教师首先引导学习回忆一元一次不等式的初步解法,然后提问:“你觉得我们学习一元一次不等式可以解决哪些问题呢?对于我们的生活实际有帮助吗?”然后教师出示问题情境:
甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费,假如派你去购买这种商品若干件,从节省费用考虑,你应选择哪个商场购物呢?
这是一个生活中常见的购物问题,与学生生活距离较近,有利于激发起学生的学习兴趣,使学生体会到学数学的价值。
(二)探究新知,解决问题
本题具有一定综合性,考虑到学生的认知水平,为了降低学生探究的难度,设置了5个由易到难的问题,引导学生分情况分问题进行有效探究:
(1)甲商场购物款达到多少元后可以优惠;乙商场购物款达到多少元后可以优惠?(2)现在有4个人,准备分别消费40元、80元、140元、160元,那么去哪家商店更合算?
(3)如果累计购物超过100元,那么在甲店购物花费小吗?
(4)累计购物超过100元而不到150元时,在哪个店购物花费小?累计购物恰好是150元时,在哪个店购物花费小?
(5)根据甲乙商店的销售方案,顾客怎样选择商店购物能获得更大优惠?你能为消费者设计一套方案吗?
教学中,首先让学生独立思考,然后组织学生分组讨论,交流解决问题的过程,教师深入小组参与活动,适时予以指导。5个问题中,问题(3)最为复杂,需要列不等式解决,是本节课的重点也是难点,应予以重点讨论。教师可提出以下问题启发学生:
1此时,你能计算出两个商场的花费吗?为什么? 2你能用式子表示出两个商场的花费吗?怎样表示?
3如果假设在甲店购物花费小,你能用不等式表示两个商场的花费关系吗? 4这个不等式你会解吗?如果不会,那么把不等号换为等号后你会解吗?他们的解法相同吗?
问题解决完之后,引导学生归纳用一元一次不等式解决实际问题的一般过程,并与一元一次方程解决实际问题的一般过程进行对比,使学生体会到二者之间的区别与联系。
(三)巩固训练、形成技能
解不等式,并在数轴上表示解集:(1)5x3﹥4x1(2)2x5﹤3x5
教师出示问题,引导学生独立思考并解答,然后小组内交流解法,教师用实物投影矫正错误,用多媒体展示解题的规范步骤,要求学生在每一步解答之前,先写出该步名称。最后教师引导学生归纳解一元一次不等式的基本过程,并与一元一次方程的解法作对比,强调系数化1时,要注意不等号的方向。
此环节是为了落实本节课的第二个教学重点而设计。使学生通过具体的练习,然后经历一元一次不等式与一元一次方程的解法的类比、对比过程,进一步掌握一元一次不等式的解法及解集的几何表示,规范解题步骤,养成按步骤操作的解题习惯,夯实双基,同时发展学生运用类比、化归等数学思想的意识,从而进一步完善已有的知识体系。
(四)应用新知,解决问题
由教师出示问题:
甲乙两家商店出售同样的茶壶和茶杯,茶壶每只定价都是20元,茶杯每只定价都是5元。两家商店的优惠办法不同:甲商店是购买1只茶壶赠送1只茶杯;乙商店是按售价的92%收款。某顾客需购买4只茶壶和若干只(超过4只)茶杯,何时到甲商场购买更优惠呢?
教师提出问题后,学生先独立思考,对于学习有困难的学生,教师可出示下列问题,予以提示,并组织学生讨论:
(1)本题中包含着怎样的不等关系?
(2)在甲商店购买时,所有茶杯都需要付款吗?
(3)如果设顾客需购买x只茶杯(x﹥4),那么在甲商店购买茶壶和茶杯需付款 元,在甲商店购买茶壶和茶杯需付款 元,不等式列为 本次活动中教师重点关注两个方面:(1)学生能否通过独立思考或讨论交流,运用一元一次不等式这一 工具解决问题(2)学生解决问题的能力。
此环节意在使学生独自经历用一元一次不等式解决实际问题的全过程,获得更多的解决问题的经验,进一步发展学习分析问题、解决问题的能力。
(五)归纳小结、分层作业
由教师提出小结问题,学生总结:
1用一元一次不等式解决实际问题的基本过程是什么?与用一元一方程解决实际问题的基本过程有何异同?
2解一元一次不等式与解一元一次方程在方法上有何异同? 3受本节课的启发,你会解不等式:4谈一谈你学完本节课的心得体会?
通过小结,引导学生回味本节课的主要内容,体会数学的思想方法,并为学生提供课下继续思考的空间,为下节课作铺垫。
最后是作业布置:
1看书P131—P133(补全书上留白,划出重点内容,完成读书笔记)2习题9.2第1(1)(2)、3(1)、(2)、5题 3选作:习题9.2第10题
读书作业有利于学生养成主动复习的学习习惯,分层作业为不同认知水平的学生提供了不同的发展空间。
以上是我对《实际问题与一元一次不等式》第一课时的认识,一定还有不足之处,请在座的专家、老师们多多批评、指正,谢谢!
x17﹤
2x53吗?
第四篇:七年级数学《一元一次不等式》说课稿
七年级数学《一元一次不等式》说课稿4篇
作为一名为他人授业解惑的教育工作者,总不可避免地需要编写说课稿,借助说课稿可以有效提高教学效率。说课稿应该怎么写才好呢?以下是小编整理的七年级数学《一元一次不等式》说课稿,欢迎大家分享。
七年级数学《一元一次不等式》说课稿1一、说教学目标
1.了解一元一次不等式的概念;
2.会解一元一次不等式。通过学习对一元一次不等式的概念及解一元一次不等式的探究过程,体会类比数学思想方法。
4、培养学生理论联系实际的思维能力及总结概括能。
基于对数学新课程标准的理解,数学是研究数量关系和变化规律的数学模型,可以帮助学生从数量关系的角度更准确、清晰地认识、描述和把握现实世界,体会数学思想,发展学生的思维水平。本教材的结构和教学内容分析,结合七年级学生的认知结构和心理特点,基于教学大纲和新课程标准的要求,本章的结构和教学内容分析,结合七年级学生的认知发展水平和心理特点,基于对学情的了解,《一元一次不等式》是人教版必修教材第 9 章第 2 课时的教学内容。在此之前,学生们已经学习了一元一次方程这为过渡到本课题的学习起到了铺垫的作用。而本课题的理论、知识是学好以后课题的基础,它在整个教材中起着承上启下的作用。
综上所述,我将本节课的教学重点确定:会解一元一次不等式。教学难点:把不等式中的未知数化为1这一步时,应根据不等式的性质确定不等号的方向是否改变;
二、说教法、学法
数学新课程标准指出,数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。数学知识相对比较抽象,学生在学习是觉得很枯燥,接受新知识会比较困难。为了激发学生学习的主动性、积极性我采用了复习导入法、演示法、讲解法、类比法。
三、说学法
根据七年级学生注意力不太集中,又好动的心理特点我采用了合作讨论法和自主探究法、练习法以提高学生自觉学习的习惯。
四、说教学过程
在本节课的教学过程中,我能够根据学生的认知结构和心理特点选择合适的教学方法,激发学生学习的主动性、积极性,将新知识化难为易,提高本节课的教学效果。我主要从以下五个环节进行教学的。
1、回顾旧知,提出目标
首先通过不等式的基本性质和一元一次方程的复习引入课题,体现了数学中常用的类比数学思想,既能激发学生学习的兴趣,同时这种类比思想有利于提高学生的创造性。再让学生通过解1道含有分母的一元一次方程,进而回顾一元一次方程的概念和解一元一次方程的步骤达到温故知新的目的。探究新知
在教学新课的过程中根据教材的重、难点;学生已有知识的实际现状选择合适的教法和学法并运用多媒体辅助教学以最大限度的提高教学效率。首先我设计了4道很简单的一元一次不等式让学生观察其共同特点从而很顺利的概括出一元一次不等式的概念;再让学生举几个一元一次不等式,从而加深对一元一次不等式概念的理解;再启发学生类比解一元一次方程的步骤探究一元一次不等式的解法和步骤,进一步比较知其联系与区别,有利于提高学生的概括总结能力。巩固练习
通过学生自主合作解2个一元一次不等式,一个不含分母、不含等号,一个含有分母、含有等号。这样由浅入深的设计让学生更容易注意到在数轴上表示解集时若包括分界点画实心点,若不包括分界点画实心点。
4、归纳小结 达标检测
设计一个问题(议一议):解不等式移项时应注意什么?系数化为1时应注意什么?在数轴上表示解集时应注意什么?是本节课的知识系统化。
注意:解不等式移项时要变号但不改变不等号的方向;系数化为1时不等式两边同除以或乘负数时不等号的方向要改变;在数轴上表示解集时若包括分界点画实心点,若不包括分界点画空心点。作业布置
让学生把教材第126页必做第1题和选做第2题写在课堂作业本上以进一步巩固本节课的知识。
总之,本节课在教学时我采用的是复习导入法、类比数学思想方法。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。让学生体会类比的数学思想方法的重要性和创新性。从而让他们通过回顾和练习解一元一次方程的过程,借助类比思想探索一元一次不等式的解法,深刻体会温故知新的成就感,进而轻松愉快的获得新知,帮助学生认识自我,建立学习数学的信心。
七年级数学《一元一次不等式》说课稿2一、说教材的地位和作用
《 一元一次不等式》是人教版教材七年级第九章第二节内容,在此之前,学生们已经学习了不等式基本性质, 不等式的解集等知识 ,这为过渡到本节内容的学习起到了铺垫的作用。同时也是学生以后顺利学习一元一次不等式组有关内容的基础.因此,本节内容在本章中具有不容忽视的重要的地位。
二、说教学目标
根据本教材的结构和内容分析,结合着七年级学生他们的认知结构及其心理特征,我制定了以下的教学目标:
1、知识与技能:掌握一元一次不等式的概念且要会解一元一次不等式,能在数轴上表示一元一次不等式的解集.2、过程与方法:通过学生观察,推理,类比,分析.得到得到一元一次不等式的概念,用数形结合的方法理解一元一次不等式的解集.3、情感与态度:初步认识一元一次不等式的应用价值,发展学生分析问题,解决问题的能力;初步感知实际问题对不等式解集的影响,积累利用一元一次不等式解决简单实际问题的经验。
三、说教学的重、难点
本着课程标准,在吃透教材基础上,我确定了以下的教学重点和难点。
教学重点:掌握一元一次不等式的概念,会解一元一次不等式,并能将解集在数轴上表示出来。
重点的依据:“人人学有价值的数学”。因此,我确定这节课的重难点是看两方面:一是教学内容与教学目标;二是学生的认识水平。这节课的意图是让学生认识一元一次不等式,会解一元一次不等式,因此,这节课的重点为掌握一元一次不等式的概念,会解一元一次不等式,并能将解集在数轴上表示出来。
教学难点: 一元一次不等式的解法
难点的依据:不等式与方程一样是千变万化的,因此不等式的解法也不是一层不变的,如何类比一元一次方程的解法来解一元一次不等式是本节的一个难点。
为了讲清教材的重、难点,使学生能够达到本节内容设定的教学目标,我再从教法和学法上谈谈:
四、说教法
在教学过程中,不仅要使学生“知其然”,还要使学生“知其所以然”。我们在以师生既为主体,又为客体的原则下,展现获取理论知识、解决实际问题方法的思维过程。
学生知识现状分析: 七年级上学期学生已经掌握一元一次方程的解法,上一节课学生已初步会进行不等式的简单变形,但是在运用不等式性质3时容易出现错误。我主要采取学生活动的教学方法,让学生真正的参与活动,而且在活动中得到认识和体验,产生践行的愿望。培养学生将课堂教学和自己的行动结合起来,充分引导学生全面的看待发生在身边的现象,发展思辩能力,注重学生的心理状况。当然教师自身也是非常重要的教学资源。教师本人应该通过课堂教学感染和激励学生,充分调动起学生参与活动的积极性,激发学生对解决实际问题的渴望,并且要培养学生以理论联系实际的能力,从而达到最佳的教学效果。同时也体现了课改的精神。
基于本节课内容的特点,我主要采用了以下的教学方法:
1、直观演示法:
利用图片的投影等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握。
2、活动探究法
引导学生通过创设情景等活动形式获取知识,以学生为主体,使学生的独立探索性得到了充分的发挥,培养学生的自学能力、思维能力、活动组织能力。
3、集体讨论法
针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神。
五、说学法
让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,成为真正的学习的主人。这节课在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:思考评价法、分析归纳法、自主探究法、总结反思法。
六、教学过程
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
导入新课:(3—5分钟)
在这节课开始之初先出示两个一元一次方程,要求学生在回忆一元一次方程的基础上解出这两个方程并要求学生说出每一步的依据。这样为后面学习一元一次不等式的概念,及类比其解法埋下伏笔。在这之后,要求学生说出不等式的3条基本性质,增强课程连续性的情况下,引导学生进入本课知识的学习。
2.创设情境 导入新知
教师出示一些简单的不等式,要求学生观察分析,分组讨论这些不等式的共同特点。学生归纳总结出共同特点后,要求学生类比一元一次方程给这些不等式取名字。
通过观察,猜想,设置悬念,激发学生强烈的求知欲,要求学生类比推理,归纳总结,发展学生分析问题,解决问题的能力。
3.类比推理 深化新知
在学生识别了什么是一元一次不等式后,出示例1(1):2(1+x)<3此不等式为一般不等式,要求学生先自主探索,尝试用解一元一次方程的解法来解这个不等式.教师在讲解时可以要求学生说出每一步的依据,让学生不等式的熟练掌握一般一元一次不等式的解法的同时理解一元一次不等式解法的真谛,同时为后面解复杂一元一次不等式做铺垫.出示例1(2).此不等式相对于(1)的不等式而言是具有分母的的不等式,可以让学生先独立思考后用化归的思想将不等式化为一般不等式来解这个不等式.出示这两个不等式代表的是两种不等式的解法.教师在讲解的时候一定要给学生分析清楚,如何用划归的思想将不等式化为一般的一元一次不等式然后再求解.熟练掌握一元一次不等式的解法后,让学生运用上节课所学的知识在数轴上将其解集表示出来,利用数形结合,始解集更加形象直观.此环节的设置培养学生团结合作,类比推理的能力,让学生养成勤动笔,勤动脑的习惯.积累学生分析问题,解决问题的能力.4.运用新知 形成能力
为了巩固本节课的教学效果,反馈学生学习的'情况,本着学以致用的原则,设置了四道解不等式的练习题:
(1)5x+15>4x-1(2)2(x+5)>3(x-5)
(3)(4)
这四道题分三个类型,让学生熟练掌握刚学的知识.根据教材的特点,学生的实际、教师的特长,以及教学设备的情况,我选择了多媒体的教学手段。这些教学手段的运用可以使抽象的知识具体化,枯燥的知识生动化,乏味的知识兴趣化。重视教材中的疑问,适当对题目进行引申,使它的作用更加突出,有利于学生对知识的串联、积累、加工,从而达到举一反三的效果。
课堂小结,强化认识。(3—5分钟)
课堂小结,可以把课堂传授的知识尽快地转化为学生的素质;简单扼要的课堂小结,可使学生更深刻地理解不等式在实际生活中的应用,并且逐渐地培养学生具有良好的个性。
4、板书设计
直观、系统的板书设计,还及时地体现教材中的知识点,以便于学生能够理解掌握
板书
1(1):2(1+x)<3(2)
练习:
(1)5x+15>4x-1(2)2(x+5)>3(x-5)(3)(4)
5、布置作业。在学习了本节课的知识内容后,为了让每一个学生及时巩固这一节的内容,同时为下一课时做准备,教师要有区别的布置作业,这样做既可以使学生掌握基础知识,又可以使学有余力的学生有所提高,从而达到拔尖和“减负”的目的。
课堂作业:126页1(1)(2)(3)(5)
(四).课后反思
本节课的教学过程中,本着重视过程,主动建构,突出应用的原则,从学生已有认知出发,让学生主动地建构其新的认知结构,提升学生的智能,让学生形成良好的思维习惯.
七年级数学《一元一次不等式》说课稿3一、说教材
《一元一次不等式》是人教版必修教材第章第课时的教学内容。在此之前,学生们已经学习了一元一次方程这为过渡到本课题的学习起到了铺垫的作用。而本课题的理论、知识是学好以后课题的基础,它在整个教材中起着承上启下的作用。
二、说教学目标
根据本教材的结构和教学内容分析,结合七年级学生的认知结构和心理特点,我将制定以下三个教学目标:
1、了解一元一次不等式的概念;会解一元一次不等式。
2、通过学习对一元一次不等式的概念及解一元一次不等式的探究过程,体会类比数学思想方法。
3、培养学生理论联系实际的思维能力及总结概括能。
三、说教学重、难点
根据教学大纲和新课程标准的要求我认为本节课的教学重点是让学生掌握一元一次方程的概念,并会类比解一元一次方程的步骤解一元一次不等式。
本节课有两个教学难点:把不等式中的未知数化为1这一步时,应根据不等式的性质确定不等号的方向是否改变;会灵活运用一元一次不等式的概念及解法的知识解决相关的数学问题。
四、说教法、学法
数学知识相对比较抽象,学生在学习是觉得很枯燥,接受新知识会比较困难。为了激发学生学习的主动性、积极性我采用了趣事导入法、类比法。
根据七年级学生注意力不太集中,又好动的心理特点我采用了合作讨论法和自主探究法以提高学生自觉学习的习惯。
五、说教学过程
在本节课的教学过程中,我能够根据学生的认知结构和心理特点选择合适的教学方法,激发学生学习的主动性、积极性,将新知识化难为易,提高本节课的教学效果。我主要从以下五个环节进行教学的。
1、回顾旧知,导入新课
首先通过鲁班造锯的故事引入课题,这个故事也正体现了数学中常用的类比数学思想,既能激发学生学习的兴趣,同时这种类比思想有利于提高学生的创造性。再让学生通过解1道含有分母的一元一次方程,进而回顾一元一次方程的概念和解一元一次方程的步骤达到温故知新的目的。
2、探究新知
在教学新课的过程中根据教材的重、难点;学生已有知识的实际现状选择合适的教法和学法并运用多媒体辅助教学以最大限度的提高教学效率。首先我设计了4道很简单的小问题题(用不等式表示下列各式)得出4个一元一次不等式让学生观察其共同特点从而很顺利的概括出一元一次不等式的概念;再给出5个不等式让学生判断是否为一元一次不等式从而加深对概念的理解;再启发学生类比解一元一次方程的步骤探究一元一次不等式的解法和步骤,进一步比较知其联系与区别,有利于提高学生的概括总结能力。
3、巩固练习
通过学生自主合作解2个一元一次不等式,一个不含分母、不含等号,一个含有分母、含有等号。这样由浅入深的设计让学生更容易注意到在数轴上表示解集时若包括分界点画实心点,若不包括分界点画实心点。
4、小结
设计一个问题(议一议):解不等式移项时应注意什么?系数化为1时应注意什么?在数轴上表示解集时应注意什么?是本节课的知识系统化。
注意:解不等式移项时要变号但不改变不等号的方向;系数化为1时不等式两边同除以或乘负数时不等号的方向要改变;在数轴上表示解集时若包括分界点画实心点,若不包括分界点画空心点。
5、作业布置
让学生把教材第126页第1题和第2题写在课堂作业本上以进一步巩固本节课的知识。
总之,本节课在教学时我采用的是故事导入法、类比数学思想方法。由古代著名的工匠鲁班经过茅草割手的事实类比发明了锯子导入课题,让学生体会类比的数学思想方法的重要性和创新性。从而让他们通过回顾和练习解一元一次方程的过程,借助类比思想探索一元一次不等式的解法,深刻体会温故知新的成就感,进而轻松愉快的获得新知识。
七年级数学《一元一次不等式》说课稿4说教材的地位与作用
《一元一次不等式组》是华东师大版义务教育课程标准实验教科书数学七年级下册第八章第三节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。是继一元一次方程、二元一次方程组和一元一次不等式之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数的重要基础,具有承前启后的重要作用。
说教学目标
(一)、知识与能力
1.掌握一元一次不等式组以及一元一次不等式组的解集的概念。
2.会解一元一次不等式组,并教会学生通过在数轴上表示不等式的解集得到不等式组的解集。
(二)、过程与方法
1.创设情境,通过实例引导学生考虑多个不等式联合的解法。并总结一元一次不等式组的解与一元一次不等式的解之间的关系。2.通过对典型例题的分析加深对结一元一次不等式组的认识。
(三)、情感、态度与价值观
1.通过数轴的表示不等式组的解,渗透数形结合这一重要的思想方法。2.在解不等式组的过程中让学生体会数学解题的直观性和简洁性的数学美。
说教学重、难点
重点 1.一元一次不等式组的概念,会用数轴表示一元一次不等式组解集的情况。2.一元一次不等式组的解法。
难点 灵活运用一元一次不等式组的知识解决问题。
(四)、说教学方法
本节课采用多媒体教学,利用多媒体教学信息容量大、操作简单、形象生动、反馈及时等优点,直观地展示教学内容,这样不但可以提高学习效率和质量,而且容易激发学生学习的兴趣,调动积极性。
(五)、说学生的学法:
学生已经学习了一元一次不等式,并会解简单的一元一次不等式,知道了用数轴表示一元一次不等式的解集分三步进行:画数轴、定界点、走方向。本节我们要学习一元一次不等式组,因此由一元一次不等式猜想一元一次不等式组的概念学生易于接受,同时能更好的培养学生的类比推理能力。本节所选例题也真正的实现了低起点小台阶,循序渐进,能使学生更好的掌握知识。
六、说教学过程:
本节课我设计了七个活动。
活动一 创设情境 导入新课
1、通过多媒体图片(选择材料通俗易懂,易引起学生的兴趣)引入一元一次不等式组的概念:
活动二 引领学生 探索新知
2、一元一次不等式组
通过上面实际问题的探究,归纳概括出一元一次不等式组的概念和一元一次不等式组解集的概念。
活动三 范例讲解 学以致用
例1: 借助数轴,求下列不等式组的解集:
(1)、(2)、(3)、(4)、(分析由课件展示)
例2:解不等式组:(1)(学生板演,教师对照多媒体点评)
活动四:反馈练习巩固提高
课堂练习:P48练习(学生板演,教师点评)
设计意图:这四道习题的设置让学生进一步理解一元一次不等式组解集的概念,会用数轴表示一元一次不等式组的解集。
活动五 数形结合 总结规律
一元一次不等式组的解集的确定规律:
(1)、多媒体演练
(2)、总结规律:
1.同大取大,2、.同小取小;
3、大小小大中间找,4、大大小小解不了。
活动六:反思小结,体验收获
这节课我们学到了什么?谈谈自己的体会?
多媒体设计表格总结。
活动七: 知识反馈,布置作业
布置作业:为了让不同的人有不同的收获,我把作业分为选做题和必做题。
(一)、课本P49习题3
(二)、选做题:能力提升
1、若不等式组无解,则m的取值范围是。
2、若方程组的解是负数,求的取值范围。
本节知识与前一节的知识联系比较紧密,在教学中要特别注意本节内容与一元一次不等式的知识的联系,让学生经历知识的拓展过程,并能通过数轴让学生直观地认识一元一次不等式组的解集,使其了解数形结合的作用。另外,在教学过程中加强对不等式组解集含义的讲述,让学生做到较深刻的理解,并熟练掌握用数轴表示不等式的解集,从而进一步引入利用观察法、归纳法即可掌握求不等式解集的办法。
第五篇:实际问题与一元一次不等式说课稿(参赛作品)
9.2《实际问题与一元一次不等式》说课稿 大南中学七年级数学备课组 吴权明
尊敬的各位评委老师:大家好!
今天我说课的内容是《实际问题与一元一次不等式》,课题选自人教版《义务教育课程标准实验教科书·数学(七年级下册)》第九章第二节第2课时.下面我分别从教学内容的分析、教学目标及重、难点的确定、教学方法的选择和教学过程的设计四个方面来说明我对这节课的教学设想。
设计理念:《数学课程标准》指出:新课程实施的基本点是促进学生全面、持续、和谐地发展。
一、教学内容的分析
本节课是在学生学习了用一元一次方程解决实际问题、不等式的性质、一元一次不等式的初步解法等知识的学情上,继续结合一些实际问题,主要学习两方面内容:第一:强化如何解不等式,再次归纳解一元一次不等式的一般步骤。第二:如何用一元一次不等式解决实际问题,引导学生完成抽象过程,建立数学模型进行分类讨论,再将数学问题转化为实际问题进行解答。其中前者性质属于基本技能的学习与提升,后者属于数学知识的实际应用。通过对两部分知识的学习使学生掌握一元一次不等式的解法,体会不等式与方程的联系与区别,体会不等式是解决涉及求未知数取值范围的有力工具,是刻画现实世界中不等关系的一种有效数学模型,本节课的学习既是对已学知识深化和运用,又是为下一课时以及下一节一元一次不等式组的学习奠定基础。
二、教学目标及重、难点的确定
1、教学目标:
《初中数学新课程标准》对本节课的教学要求为:会解简单的一元一次不等式,并能在数轴上表示出解集。能够根据具体问题中的数量关系,列出一元一次不等式解决简单的实际问题。
根据本课教材的特点、课标对本节课的教学要求以及本班学生现有的认知水平,我从三个方面确定了以下教学目标:(1)知识目标:
会从实际问题中抽象出数学模型,能用不等式熟练地表示出不等关系。(2)能力目标:
通过思考、观察、类比等实践活动,感知方程与不等式的内在联系,积累利用一元一次不等式解决实际问题的经验,提高分类讨论问题的能力,体会不等式和方程同样都是刻画现实世界数量关系的重要模型,体会数学建模的思想。(3)情感目标:
在数学学习和探究的过程中,形成实事求是的态度和独立思考的习惯;在解决问题的同时,学会与其他同学交流,形成互帮互助的意识。2.教学的重点和难点:
以不等式为工具,分析问题、解决问题是本章的重点,掌握一元一次不等式的解法及解集的几何表示是本章的基本技能也是本节课的重点之一。根据考试说明所要求的会用移项法则解一元一次不等式,能够根据具体问题中的数量关系列出一元一次不等式是本节的重点之二。结合本班学生目前的教学实情以及考虑到本课时是《实际问题与一元一次不等式》,本课时的教学重点为:掌握用一元一次不等式解决实际问题。由于学生初次接触含有不等关系的实际问题,因此对于如何分析出其中的不等关系,并应用一元一次不等式描述不等关系,从而解决实际问题有一定难度,所以本节课的教学难点:用一元一次不等式抽象出隐含在实际问题中的不等关系。
三、教学方法的选择:
根据教学内容、教学目标和学生的认知水平,在本节课的设计中,我主要从学生已有的学习经验出发,通过对一个具有层次性、挑战性的实际问题分层理解、引出一元一次方程,再对题目作相应的修改,从而引出一元一次不等式,这样促使学生思考、类比从而探究出解决问题的新方法并对该新方法进行有梯度的训练。此外在讲解例2之前,展示一系列身边商场的图片,激发学生的好奇心以及兴趣。在整个学习中,教师激发学生小组合作探究,引导学生独立思考、主动学习,并适时恰当地引导、帮助学生找到解决问题的方法。使学生感受数学学习中类比、分类讨论的思想,体会从方程到不等式的迁移,同时使学生经历将生活中的数和数量关系转化为数学符号的具体建模过程,体会不等式作为刻画现实世界数量关系的重要模型的价值。因此,本节课采用的教学方式是启发式、小组合作教学方式,用到类比、分类讨论的思想。
四、教学过程的设计
以我们学校正在实施的课改理念为中心,以学习单为载体,《学习单》教学模式:遵循“先学后教”、“以学定教”的教学理念,充分发挥学生自主学习、自主探究,小组合作交流积极性。课堂教学中师生、生生互动是我们展示才艺传递信息的主要形式。从本班学生的实际学情为出发点本节课的教学程序主要分为:复习引入,启发引导;创设情境,激趣思考;探究新知,解决问题,尝试练习;方法总结,深刻理解;课堂小结;课后分层练习六个环节进行。
一、复习引入,启发引导
教师首先通过一道方程和一道不等式:(1)1000.9(x100))=500.95(x50)
(2)x+365×0.6> 0.7×365 为本节课能够顺利开展、节省时间做好铺垫。接着以一道修改后的方程题引出本节课的例1,这样循序渐进地过渡到新课中去,也符合学生的认识规律。注意的问题是:对于本题部分学生不知道怎么设未知数,因为问题中出现了“至少”词语,导致无从下手。教师可以这样来引导学生:它与一元一次方程设未知数是一样的,当你求出不等式的解集后再做判断,这样问题中反映出的不等关系的词语会与你算出的结果一致的。尝试练习1:通过类比的思想,学生自己尝试模仿练习,加深学生对新知识的理解与应用
二、创设情境、激趣思考
教师展示一系列学生身边商场的促销图片,激发学生的好奇心以及兴趣,从而引出例2,(此题不好理解,教师要求小组1号、2号学生掌握,而其它学生作了解。)
三、探究新知,解决问题 引导分析:
甲的优惠方案的起点为购物款达到 元后; 乙的优惠方案的起点为购物款达到 元后;
(1)如果累计购物不超过50元,在两家商店购物花费有区别吗?为什么?
(2)如果累计购物超过50元不超过100元,在两家商店购物花费有区别吗?为什么?如果有,则在哪家商店购物花费小?
(3)若累计购物超过100元,设累计花费x元,则在甲商店需要花费 元,在乙商店需要花 元。
此时,两家商店都有优惠,究竟到哪家购物更优惠呢?可能有几种情况?(分类讨论思想的体现)(4)购物累计达到多少钱时(超过100元),在哪家购物花费更少? ①当选择任意商店时候,列出等式
②当选择 商店时候,请列出不等关系: ③当选择 商店时候,请列出不等关系:
[设计目的] 这是一个生活中常见的购物问题,与学生生活距离较近,体现出数学来源于生活,服务于生活的理念,并且有利于激发起学生的学习兴趣,使学生体会到学数学的价值,也充分体现了《课标》的基本理念:人人学有价值的数学,人人都能获得必需的数学。对于下列不等式
50+95%(x-50)>100+90%(x-100)50+95%(x-50)<100+90%(x-100)或着:
设计目的:该问题的设计不仅可以解决学生预习导学中存在的问题更能引出本节课所需突破的重点,起到承上启下的作用。
教师提问:我们学习过的解一元一次不等式的方法是什么?能用此方法解决上述不等式吗?
老师根据学生的回答继续引导,加入我们用不等式的性质解决上述这不等式很麻烦,有没有更简单的方法呢?教师可以引导学生采用特殊值法辅助判断。
尝试练习2:通过类比的思想,学生自己尝试模仿练习,加深学生对新知识的理解与应用 [设计目的]此环节是为了落实本节课的教学重点而设计。
四、方法总结,深刻理解
学生自由回答,老师围绕以下问题引导:
1、你对本节课内容有哪些认识?
实际问题————审题、设未知数————根据不等关系列出不等式————建立数学模型(一元一次不等式)————解一元一次不等式————数学问题的解————实际问题的解
2、本节课你了解到了哪些数学思想? 类比思想、分类讨论思想、特殊值法
[设计目的]通过小结,引导学生回味本节课的主要内容,体会数学的思想方法,并为学生提供课下继续思考的空间。
五、课后分层练习
这一环节我主要设计道习题: 第一题:务实基础---修筑高楼
中山市某旅游区向本地游客优惠开放,每张票20元.另外,每天还将售出每张60元 的普通票300张,如果要保持每天票房收入不低于20000元,那么平均每天至少应出售本地优惠票多少张? 第二题:巅峰对决——服务生活
A购物中心和B购物中心以同样的价格出售同样的商品,现在两家商场服装专柜打出这样的广告:
母亲节快到了,阿芳想去购买衣服送给妈妈以尽孝心,不知道选哪家商场,请你做她的参谋,去哪家商场购物能获得更大优惠?
[设计目的] 分层作业为不同认知水平的学生提供了不同的发展空间,减轻部分学生的学习负担。