第一篇:热力学与统计物理复习总结及相关试题
《热力学与统计物理》考试大纲
第一章 热力学的基本定律
基本概念:平衡态、热力学参量、热平衡定律
温度,三个实验系数(α,β,T)转换关系,物态方程、功及其计算,热力学第一定律(数学表述式)热容量(C,CV,Cp的概念及定义),理想气体的内能,焦耳定律,绝热过程及特性,热力学第二定律(文字表述、数学表述),可逆过程克劳修斯不等式,热力学基本微分方程表述式,理想气体的熵、熵增加原理及应用。综合计算:利用实验系数的任意二个求物态方程,熵增(ΔS)的计算。
第二章
均匀物质的热力学性质
基本概念:焓(H),自由能F,吉布斯函数G的定义,全微公式,麦克斯韦关系(四个)及应用、能态公式、焓态公式,节流过程的物理性质,焦汤系数定义及热容量(Cp)的关系,绝热膨胀过程及性质,特性函数F、G,空窖辐射场的物态方程,内能、熵,吉布函数的性质。
综合运用:重要热力学关系式的证明,由特性函数F、G求其它热力学函数(如S、U、物态方程)
第三章、第四章 单元及多元系的相变理论
该两章主要是掌握物理基本概念:
热动平衡判据(S、F、G判据),单元复相系的平衡条件,多元复相系的平衡条件,多元系的热力学函数及热力学方程,一级相变的特点,吉布斯相律,单相化学反应的化学平衡条件,热力学第三定律标准表述,绝对熵的概念。
统计物理部分
第六章
近独立粒子的最概然分布
基本概念:能级的简并度,空间,运动状态,代表点,三维自由粒子的空
间,德布罗意关系(=,Pk),相格,量子态数。
等概率原理,对应于某种分布的玻尔兹曼系统、玻色系统、费米系统的微观态数的计算公式,最概然分布,玻尔兹曼分布律(alle(Z1l)配分函数
NZ1lellses),用配分函数表示的玻尔兹曼分布(Z11hr0alell),fs,Pl,Ps的概念,经典配分函数()麦态斯韦速度分布律。
综合运用:
能计算在体积V内,在动量范围P→P+dP内,或能量范围ε→ε+dε内,粒子的量子态数;了解运用最可几方法推导三种分布。
第七章
玻尔兹曼统计
基本概念:熟悉U、广义力、物态方程、熵S的统计公式,乘子α、β的意义,玻尔兹曼关系(S=KlnΩ),最可几率Vm,平均速度V,方均根速度Vs,能量均分定理。
综合运用:
能运用玻尔兹曼经典分布计算理想气体的配分函数内能、物态方程和熵;能运
1eldu用玻尔兹曼分布计算谐振子系统(已知能量ε=(n+2))的配分函数内能和热容量。
第八章
玻色统计和费米统计
基本概念:
光子气体的玻色分布,分布在能量为εfs1s的量子态s的平均光子数eKT1)(,T=0k时,自由电子的费米分布性质(fs=1),费米能量(0),费米动量PF,T=0k时电子的平均能量,维恩位移定律。
综合运用:掌握普朗克公式的推导;T=0k时,电子气体的费米能量(0)计算,T=0k时,电子的平均速率V的计算,电子的平均能量的计算。
第九章
系综理论
基本概念:
空间的概念,微正则分布的经典表达式、量子表达式,正则分布的表达式,正则配分函数的表达式。
经典正则配分函数。
不作综合运用要求。
四、考试题型与分值分配
1、题型采用判断题、单选题、填空题、名词解释、证明题及计算题等六种形式。
2、判断题、单选题占24%,名词解释及填空题占24%,证明题占10%,计算题占42%。
《热力学与统计物理》复习资料
一、单选题
1、彼此处于热平衡的两个物体必存在一个共同的物理量,这个物理量就是()
①态函数 ②内能 ③温度 ④熵
2、热力学第一定律的数学表达式可写为()
①UBUAQW
②UAUBQW ③UBUAQW
④UAUBQW
VT,则气体经
3、在气体的节流过程中,焦汤系数=CP,若体账系数节流过程后将()
①温度升高 ②温度下降 ③温度不变 ④压强降低
4、空窖辐射的能量密度u与温度T的关系是()
(T1)
1①uaT
②uaVT
③uaVT
④uaT
5、熵增加原理只适用于()
①闭合系统 ②孤立系统 ③均匀系统 ④开放系统
6、在等温等容的条件下,系统中发生的不可逆过程,包括趋向平衡的过程,总是朝着()
①G减少的方向进行 ②F减少的方向进行 ③G增加的方向进行 ④F增加的方向进行
7、从微观的角度看,气体的内能是()
①气体中分子无规运动能量的总和
②气体中分子动能和分子间相互作用势能的总和 ③气体中分子内部运动的能量总和
④气体中分子无规运动能量总和的统计平均值
8、若三元Ф相系的自由度为2,则由吉布斯相律可知,该系统的相数Ф是()334
4①3
②2
③1
④0
9、根据热力学第二定律可以证明,对任意循环过程L,均有
①TL0
②
TL0
③TL=0
④
TL=S
10、理想气体的某过程服从PVr=常数,此过程必定是()
①等温过程
②等压过程
③绝热过程
④多方过程
11、卡诺循环过程是由()
①两个等温过程和两个绝热过程组成
②两个等压过程和两个绝热过程组成 ③两个等容过程和两个绝热过程组成 ④两个等温过程和两个绝热过程组成
12、下列过程中为可逆过程的是()
①准静态过程
②气体绝热自由膨胀过程
③无摩擦的准静态过程
④热传导过程
13、理想气体在节流过程前后将()
①压强不变
②压强降低
③温度不变
④温度降低
14、气体在经准静态绝热过程后将()
①保持温度不变
②保持压强不变
③保持焓不变
④保持熵不变
15、熵判据是基本的平衡判据,它只适用于()
①孤立系统
②闭合系统
③绝热系统
④均匀系统
16、描述N个三维自由粒子的力学运动状态的μ空间是()
①6维空间
②3维空间
③6N维空间
④3N维空间
17、服从玻尔兹曼分布的系统的一个粒子处于能量为εl的概率是()
Z1Z1Z1N
①
②
③
④
18、T=0k时电子的动量PF称为费米动量,它是T=0K时电子的()
①平均动量
②最大动量
③最小动量
④总动量
19、光子气体处于平衡态时,分布在能量为εs的量子态s的平均光子数为()
1sPl=1elPl=lelPl=1elPl=1el11s1②eKT1
③e1
④eKT1
①e20、由N个单原子分子构成的理想气体,系统的一个微观状态在空间占据的相体积是()
①h
②h
③h
④h
21、服从玻耳兹曼分布的系统的一个粒子处于能量为εs的量子态S的概率是()
①PsPs3N6N361N1Nees
②Psess
③
④
22、在T=0K时,由于泡利不相容原理限制,金属中自由电子从能量ε=0状态起依次填充之(0)为止,(0)称为费米能量,它是0K时电子的()
①最小能量
②最大能量
③平均能量
④内能
23、平衡态下,温度为T时,分布在能量为εs的量子态s的平均电子数是()
Psesfs1ufs②
1①fseKTeKT1 11ufsueKT1
④eKT1 ③
24、描述N个自由度为1的一维线性谐振子运动状态的μ空间是()
①1维空间
②2维空间
③N维空间
④2N维空间
25、玻色分布和费米分布都过渡到玻耳兹曼分布的条件(非简并性条件)是()
①e②e1
③e1
④e1
26、由N个自由度为1的一维线性谐振子构成的系统,谐振子的一个运动状态在μ空间占据的相体积是()
2N2N①h ②h ③h ④h
27、由N个自由度为1的一维线性谐振子构成的系统,其系统的一个微观状态在空间占据的相体积是()
2N2N①h ②h ③h ④h
28、由两个粒子构成的费米系统,单粒子状态数为3个,则系统的微观状态数为()
①3个 ②6个 ③9个 ④12个
29、由两个玻色子构成的系统,粒子的个体量子态有3个,则玻色系统的微观状态数为()
①3个 ②6个 ③9个 ④12个 30、微正则分布的量子表达式可写为()
①se ②se
③s
④
二、判断题
1、无摩擦的准静态过程有一个重要的性质,即外界在准静态过程中对系统的作用力,可以用描写系统平衡状态的参量表达出来。()
CPs
12、在P-V图上,绝热线比等温线陡些,是因为r=CV。()
3、理想气体放热并对外作功而压强增加的过程是不可能的。()
4、功变热的过程是不可逆过程,这说明热要全部变为功是不可能的。()
5、绝热过程方程对准静态过程和非准表态过程都适用。()
6、在等温等容过程中,若系统只有体积变化功,则系统的自由能永不增加。()
7、多元复相系的总焓等于各相的焓之和。()
8、当孤立系统达到平衡态时,其熵必定达到极大值。()
9、固相、液相、气相之间发生一级相变时,有相变潜热产生,有比容突变。
10、膜平衡时,两相的压强必定相等。()
11、粒子和波动二象性的一个重要结果是微观粒子不可能同时具有确定的动量和坐标。()
12、构成玻耳兹曼系统的粒子是可分辨的全同近独立粒子。()
13、具有完全相同属性的同类粒子是近独立粒子。()
14、玻色系统的粒子是不可分辨的,且每一个体量子态最多能容纳一个粒子。()
15、定域系统的粒子可以分辨,且遵从玻耳兹曼分布。()
16、热量是热现象中特有的宏观量,它没有相应的微观量。()
117、玻尔兹曼关系S=KlnΩ只适用于平衡态。()
18、T=0k时,金属中电子气体将产生巨大的简并压,它是泡利不相容原理及电子气的高密度所致。()
三、填空题
1、孤立系统的熵增加原理可用公式表示为()。
2、一孤立的单元两相系,若用指标α、β表示两相,则系统平衡时,其相变平衡条件可表示为()。
3、吉布斯相律可表示为f=k+z-Ф,则对于二元系来说,最多有()相平衡。
4、热力学系统 由初始状态过渡到平衡态所需的时间称为()。
5、热力学第二定律告诉我们,自然界中与现象有关的实际过程都是()。
6、热力学第二定律的普遍数学表达式为()。
dP7、克拉珀珑方程dTLTv中,L的意义表示1mol物质在温度不变时由相转变到相时所吸收的()。
8、在一般情况下,整个多元复相系不存在总的焓,仅当各相的()相同时,总的焓才有意义。
9、如果某一热力学系统与外界有物质和能量的交换,则该系统称为()。
10、热力学基本微分方程dU=()。
11、单元系开系的热力学微分方程dU=()。
12、单相化学反应的化学平衡条件可表示为()。
13、在s、v不变的情形下,平衡态的()最小。
14、在T、V不变的情形下,可以利用()作为平衡判据。
15、设气体的物态方程为PV=RT,则它的体胀系数=()。
16、当T→0时,物质的体胀系数()。
17、当T→0时,物质的CV()。
18、单元系相图中的曲线称为(),其中汽化曲线的终点称为()。
19、能量均分定理告诉我们,对处在温度为T的平衡态的经典系统,粒子能量中每一个平方项的平均值都等于()。
20、平衡态下,光子气体的化学势μ为零,这是与系统中的光子数()相联系的。
21、平衡态统计物理的一个基本假设是()。
22、空窖内的辐射场可看作光子气体,则光子气体的能量ε和圆频率ω遵循的德布罗意关系为()。
23、若系统由N个独立线性谐振子构成,则系统配分函数Z与粒子配分函数Z1的关系为()。
24、用正则分布求热力学量实质上相当于选取()作为特性函数。
25、由N个单原子分子构成的理想气体,粒子配分函数Z1与系统正则配分数Z的关系为()。
326、T=0k时,电子气体的总能量U=5,式中N为电子数,(0)为费米能,则一个电子的平均能量为()。
2mV27、已知T=0k时,自由电子气体的化学势,则电子的费米功量P(0)=()。
28、等概率原理的量子表达式为()。
29、用微正则分布求热力学量实质上相当于选取()作为特性函数。
30、由麦克斯韦速度分布律可知,如果把分子速率分为相等的间隔,则()速率所在的间隔分子数最多。
四、名词解释
1、热力学平衡态
2、驰豫时间
3、广延量
4、强度量
5、准静态过程
6、可逆过程
7、绝热过程
8、节流过程
9、特性函数
10、熵增加原理
11、等概率原理
12、μ空间
13、态密度
14、粒子全同性原理
15、最概然速率
16、能量均分定理
17、玻耳兹曼分布
18、玻色分布
19、费米分布
20、空间
五、证明题
1、证明热力学关系式
1TP[PT]VCTUV V
CPS(式中为体胀系数
2、VPTVN(0)(0)2(32N)23)
TPT(式中为压力系数)CV3、证明热力学关系式VS
TT(式中T为压缩系数,
4、证明热力学关系式PVUVTPTS V5、证明热力学关系式
为体胀系数)
R2aRTPP32TV6VV(Vb)VT6、对某种气体测量得到,式中R,a,b为常数,试证该气体的物态,方程为范德瓦斯方程。
CPPP
7、证明热力学关系VSCVVT。
TVTPCTP,并说明其物理意义。SP8、证明
PTdsCVdTTdVTV9、证明 TTPPTVUUUVV
10、证明
六、计算题:
1、已知某气体的体胀系数
1T,等温压缩系数
13avT4KT1P,试求该气体的物态方程。
2、已知某热力学系统的特性函数F=和物态方程。,式中为常数。试求该系统的熵s
R,1PVT,试求该气体
3、实验测得1mol气体的体胀系数和压强系数分别为的物态方程。
4、一体积为2V的容器,被密闭的隔为等大的两部分A和B,开始时,A中装有单原子理想气体,其温度为T,而B为真空。若突然抽掉隔板,让气体迅速膨胀充满整个容器,求系统的熵变。
5、对某固体进行测量,共体胀系数及等温压缩系数分别为式中a,b为常数,试求该固体的物态方程。
6、实验测得某气体的体胀系数和等温压缩系数分别为R,a均为常数。试求该气体的物态方程。
2aTbPV1P,TbTV,nRPV,TaV,式中n,7、已知某表面系统的特性函数F=A,式中为表面张力系数,且=(T),A为表面积。试用特性函数法求该系统的熵。
vbv,试求气体从体积v1等
8、已知1mol范德瓦耳斯气体的物态方程为温膨胀到v2时的熵变Δs。
9、有两个体积相同的容器,分别装有1mol同种理想气体,令其进行热接触。若气体的初温分别为300k和400k,在接触时保持各自的体积不变,且已知摩尔热容量CV=R,试求最后的温度和总熵的变化。
PRTa23,其中b为常数。设
10、已知某系统的内能和物态方程分别为0K时的熵S0=0,试求系统的熵。
11、设压强不太高时,1mol真实气体的物态方程可表示为PV=RT(1+BP),其中R
UbVT4,PV1U为常数,B为温度的函数,求气体的体胀系数α和等温压缩系数T。
RaV2TPTP12、对某气体测量得到如下结果:
V,Tf(P)PT,式中α,R为常数,f(P)只是P的函数。试求(1)f(P)的表达式。(2)气体的物态方程。
13、已知水的比热为4.18J/g.c,有1kg 0℃的水与100℃的恒温热源接触,当水温达到100℃时,水的熵改变了多少?热源的熵改变了多少?水与热源的总熵改变了多少?
14、设高温热源T1与低温热源T2与外界绝热。若热量Q从高温热源T1传到低温热源T2,试求其熵度。并判断过程的可递性。15、1mol范德瓦斯气体从V1等温膨胀至V2,试求气体内能的改变ΔU。
16、已知理想气体的摩尔自由能f=(CV-S0)T-CVTlnT-RTlnV+f0,试求该气体的摩尔熵。
17、试由玻耳兹曼分布求单原子理想气体的物态方程和内能。(积分公式:eax2a)
18、试求T=0k时,金属中自由电子气体的费米能量μ(0)。
19、若固体中原子的热运动可看作是3N个独立的线性谐振子的振动,振子的能量=(n12)hv,n0,1,2,。试用玻耳兹曼分布求振子的配分函数Z1和固体的内能
uNlnZ112bq2U。
20、试由玻耳兹曼分布推导热力学系统内能U的统计表达式
21、由N个经典线性谐振子组成的系统,其振子的能量b为常数,试求振子的振动配函数Z1(积分式。,式中a,=12ap2ex2dx)
pc,22、空窖辐射看作由光子气体构成。已知光子气体的动量与能量的关系为式中为圆频率,c为光速。试求在体积V的空窖内,在到+d的圆频率范围内,光子的量子态数为多少?
23、设空窖辐射场光子气体的能量=cp,试求温度为T,体积为V的空窖内,圆频率在到d范围内的平均光子数。
24、对于金属中的自由电子气体,已知电子的能量在到d范围内电子的量子态数。
2Isin,试求双原
25、设双原子分子的转动惯量为I,转动动能表达式子分子的转动配分函数。
26、假充电子在二维平面上运动,密度为n,试求T=0K时二维电子气体的费米能量μ(0)。
27、气柱的高度为H,截面积为S,处于重力场中,并设气柱分子能量
p2=2m,试求在体积V内,能量
2=1(P2PQ2)=12m(PxPyPz)mgzax2222,试由玻耳兹曼分布求气柱分子的配分函数Z1和内能
a)U(积分公式:
28、服从玻耳兹曼分布的某理想气体,粒子的能量与动量关系为=cp,式中c为光速。气体占据的体积设为V,试求粒子的配分函数。edx
29、试求温度为T,体积为V的空窖内,圆频率在到d范围内的平均光子数及辐射场内能按频率分布的规律。30、对于金属中自由电子气体,电子的能量
=p22m,试求在体积V内,T=0K时系统的总电子数。
部分参考答案
一、单选题
17、②
19、②
21、①
23、④
28、①
29、②
二、证明题
1、利用T、V、U构成的链式关系
TVUVP1=TPTV
VUUTTV及能态公式UT即可证明。US=TPVVTT10、选取U=U(T,V)以代入下式
T=VUSTUT[TP]UV VTU=-VTSPVTTV代入即得
且
六、计算题
4FS-=aVT3TV2、31F4P=aTTT
3dTdPpdVV将α、β代入再改写为
3、选取T=T(P,V)可求微分得dVRPdTRTP2dP凑成全微分后积分可得
dVdTTdP2VRTP
1ap26、选取V=V(T,P)微分得V1以α,T代入积分:PV=nRT-2C
确定C=0 ∴PV=nRT-
28、S=Tap
CVTTdTV2V1V2PPdVdVV1TTVV=以范氏气体方程代入求偏导数再积S=Rlnv2bv1b
dS=dUPdVT分即得
10、由题中已知条件代入热力学基本微分方程S=43bTV3然后积分可得
RdTTf(P)dPf(P)2P 由全微分条件可得
aR
212、(1)选取V=V(T,P)得dV=PTTdPadTdTR-22PT积分并由物理边界条件确定积分
(2)将f(P)代入dV式dV=P常数 RT
∴V=PUaT
15、UPCdT[PT]dVVTV以范氏气体方程代入
V1adVVV111aVV2 1f'SCVlnTRlnVS0TV16、17、配分函数Z11h3e32m(PxPyPz)222dxdydzdpxdpydpz
2mZ1Vh2
20、UNPllllalllNlz1el.lNZ1(lell)
NZ1Z1N12ap2lnZ1
2=Z
21hab2khabT21、v11he(12bq)dqdp
23、光的为 KT0在体积V的空窖内,在动量P至P+dP范围内光子的量子态数24VPdPh32(考虑自旋)
将cP代入得
体积V内,在圆频率d范围内光子的量子态数
VC23d2fs1以V2eKT1代入 得体积V的空窖内,圆频率在d范围内
d32的平均光子数为C24、25、见教材P275
26、动量在D(P)dpe23KT1
p28Vpdph以2m代入得D()d4Vh3(2m)3122d
Px至PxdPx,Py至PydPy范围内电子的量子态数
hD(Px,Py)dPxdPy2dPxdPy(Px,Py)(P,)SdPxdPy
(1)
(2)
2PdP
又P2m
(3)
∴D()d4sh2md
(4)
(0)(0)
4smh21fs0
T=0K时,∴
∴27Z11h3NfsD()d(0)0d4smh2(0)
(0)hn4m12(式中nNS)、sh33dxdyH0dze2mKT(PxPyPz)222dPxdPydPz(2mKT)2KTmg(1emgHKT)
UNlnZ12U0NKTNmgHmgH
28、Z11h3e13cpdxdydzdpxd331 Vpydpz3heKT0ecp4pdp24Vh30pe2cpdp
8V3=hc8KVhc2233T 30、D(P)dp8VPdPh2P2m代入
(0)(0)D()dN1134V22fs(2m)d30h
∴ (0)0fsD()d8V3(2mh2)332(0)
2《热力学与统计物理》二00四年七月全真试题(仅供参考)
一、判断题(下列各题,你认为正确的,请在题干的括号内打“√”,错的打“×”。每题2分,共20分)
1、在等温等压条件下,若系统只有体积变化功,则系统的吉布期函数永不增加。()
2、气体的节流过程是等焓过程。()
3、系统的体积是强度量,系统的压强是广延量。()
4、根据吉布斯相律,二元四相系的自由度f=4。()
5、单元复相系达到平衡时,各相的温度、压强和化学势必须分别相等。()
6、所有工作于两个一定温度之间的可逆热机,其效率不相等。()
7、两条绝热线不能相交。()
8、对于处在平衡态的孤立系统,微观状态数最多的分布出现的概率最大。()
9、具有完全相同属性的同类粒子是近独立粒子。()
10、顺磁性固体是由定域、近独立的磁性离子组成的系统,遵从玻耳兹曼分布。()
二、填空题(每题2分,共20分)
1、如果某一热力学系统与外界有物质和能量的交换,则该系统称为()。
2、热力学第二定律的开尔文表述是:()。
3、热力学基本方程du=()。
S=
4、对热力学系统而言,麦氏关系PT()。
dp5、克拉珀龙方程dT=LT(vv)中L表示()。
6、系统的熵S与微观状态数Ω之间的玻耳兹曼关系式是()。
7、玻色(费米)分布可以过渡到玻耳兹曼分布的经典极限(非简并条件)为()。
8、根据麦克斯韦速度分布律,理想气体的方均根速率Vs=()。
9、对于处在温度为T的平衡状态的经典系统,粒子能量中每一个平方项的平均值等于()。
10、设有两个全同的玻色子,占据三个不同的个体量子态,则该系统最多有()个不同的微观状态。
三、名词解释题(每题5分,共20分)
1、熵增加原理
2、不可逆过程
3、等概率原理
4、玻色分布
四、计算题(每题10分,共40分)
1、某一热力学系统的体胀系数的物态方程。
2、理想气体初态温度为T,体积为VA,经绝热自由膨胀过程体积膨胀为VB,求气体的熵变。
3、求由N个原子构成的爱因斯坦固体的内能。(可能用到的公式:1+x+x2+…11T,等温压缩系数
1p,求此热力学系统
=KT=+xn=1x,(x1))
4、某种样品中的电子服从费米分布,其态密度有如下特征:ε<0时,D(ε)=0;ε≥0时,D(ε)=D0,电子总数为N,试求T=0k时的化学势µ0,总能量U0。
第二篇:热力学统计物理
热力学统计物理(目录)
第一章 热力学的基本规律
第二章 均匀物质的热力学性质
第三章 单元系的相变
第四章 多元系的复相变平衡和化学平衡 热力学平衡
第五章 不可逆过程热力学简介
第六章近独立粒子的最概然分布
第七章 波尔茨曼统计
第八章 玻色统计和费米统计
第九章 系宗理论
第十章 涨落理论
第十一章 非平衡态统计理论初步
第三篇:《热力学与统计物理》教学大纲[范文]
《热力学与统计物理》教学大纲
学分:学时:审 核 人:执 笔 人:面向专业:物理学
一、课程定位
教学对象:物理专业本科生
课程类型:理论物理方向必修课
二、教学目标
通过本课程的学习要求学生初步掌握与热现象有关的、物质的宏观物理性质的唯象理论与统计理论,并对二者的特点与联系有一较全面的认识。为学习后续课程和独立解决实际问题打下必要的基础。
三、教学内容及要求
大纲基本内容(不带*号部分)可在规定的72学时内完成。各章所注学时前一个数字为讲授课时数后者为习题课、讨论课等学时数。各节所附数字为讲授时数。
第一章 热力学的基本规律(10+0)
1.热力学系统的平衡状态及其描述
2.热平衡定律和温度
3.物态方程
4.功l
5.热力学第一定律
6.热容量和焓
7.理想气体的内能
8.理想气体的绝热过程
9.理想气体的卡诺循环
10.热力学第二定律l
11.卡诺定理
12.热力学温标(*)
13.克劳修斯等式和不等式l
14.熵的热力学基本方程1
15.理想气体的熵1
16.热力学第二定律的普遍表述1
17.熵增加原理的简单应用1
18.自由能和吉布斯函数1
说明:在克劳修斯等式和不等式之前的内容与《热学》课重复较多,除基本概念外可做复习性简述,可避免重复。同时又能保证热力学基本概念与规律的严格性与系统性.重点应放在熵的性质,熵增加原理的应用上。
第二章 均匀物质的热力学性质(6+2)
1.能、焓、自由能和吉布斯函数的全微分
2.麦氏关系的简单应用
3.气体的节流过程和绝热彭胀过程
14.基本热力学函数的确定1
5.特性函数l
6.平衡辐射的热力学1
7.磁介质的热力学1
说明:本章是热力学部分的重点,要求在讲清辅助函数的性质及麦氏关系的基础上.通过对各类体系的应用体现热力学函数的应用方法和热力学函数应用的普遍性;本章习题较多,安排2学时的习题课。
第三章 单元系的相变(8+0)
1.热动平衡判据1
2.开系的基本热力学方程1
3.单元系的复相平衡条件1
4.单元复相系的平衡性质1
5.临界点和气液两相的转变1
6.液滴的形成2
7.相变的分类1
8.临界现象和I临界指数(*)
9.朗道连续相变理论(*)
第四章 多元系的复相平衡和化学平衡(4+0)
1.多元系的热力学函数和热力学方程l
2.多元系的复相平衡条件1
3.吉布斯相律1
4.热力学第三定律1
第五章 不可逆热力学简介(*)
第六章近独立粒子的最概然分布
1.系统微观运动状态的描述1
2.等概率原理
3.分布和微观状态2
4.玻尔兹曼分布2
5.粒子运动状态的经典描述
6.粒子运动状态的量子描述
7.玻色分布和费米分布l
8.三种分布的关系1
第七章 玻耳兹曼统计(14+2)
1.热力学量的统计表达式2
2.理想气体的物态方程2
3.麦克斯韦速度分布律2
4.能量均分定理2(10+0)
5.理想气体的内能和热容量(*)
6.理想气体的熵2
7.固体热容量的爱因斯坦理论2
8.顺磁性固体(*)
9.负温度状态2
说明:这一部分是经典统计的重点,内容较多,安排2学时的习题课。
第八章 玻色统计和费米统计(8+0)
1.热力学量的统计表达式1
2.弱简并玻色气体和费米气体(*)
3.光子气体2
4.玻色一爱因斯坦凝聚2
5.金属中的自由电子气体2
6.简并理想费米气体简例l
7.二维电子气体与量子霍尔效应(*)
说明:这部分是量子统计的重点,在实际中应用广泛而重要,对深化人们对量子世界的认识非常有意义,可对学生提高要求。
第九章 系综理论(8+0)
1.相空间刘维尔定理1
2.微正则分布l
3.微正则分布的热力学公式1
4.正则分布l
5.正则分布的热力学公式1
6.实际气体的物态方程1
7.巨正则分布1
8.巨正则分布的热力学公式1
9.巨正则分布的简单应用(*)
说明:微正则系综可以作为基本假设而省去刘维尔定理,巨正则分布的分布函数及热力学公式也可以不做推导只给出结果,阐明意义。
第十章 涨落理论(*)
第十一章 非平衡态的统计理论(*)
四、考核方式、方法
闭卷考试,平时成绩30%,卷面成绩70%。
五、主要参考书
(1)龚昌德《热力学与统计物理学》高等教育出版社,1982年
(2)苏汝铿《统计物理学》复旦大学出版社,1990年
(3)钟云霄《热力学与统计物理》科学出版杜,1988年
(4)陈光旨《热力学统计物理基础》广西师范大学出版社,1989年
第四篇:热力学与统计物理第三章知识总结
§3.1 热动平衡判据
当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。这些条件可以利用一些热力学函数作为平衡判据而求出。下面先介绍几种常用的平衡判据。oisd
一、平衡判据
1、熵判据 熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。如果只有体积变化功,孤立系条件相当与体积不变和内能不变。
因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。如果将熵函数作泰勒展开,准确到二级有
d因此孤立系统处在稳定平衡态的充分必要条件为既围绕某一状态发生的各种可能的虚变动引起的熵变稳定的平衡状态。
如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。如果对于某些变动,熵函数的数值不变,这相当于中性平衡了。,该状态的熵就具有极大值,是熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。
2、自由能判据 表示在等温等容条件下,系统的自由能永不增加。这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。这一判据称为自由能判据。
按照数学上的极大值条件,自由能判据可以表示为: 由此可以确定平衡条件和平衡的稳定性条件。
所以等温等容系统处于稳定平衡状态的必要和充分条件为: 3吉布斯函数判据
在等温等压过程中,系统的吉布斯函数永不增加。
可以得到吉布斯函数判据:系统
;
在等温等压条件下,对于各种可能的变动,平衡态的吉布斯函数最小。
数学表达式为
,等温等压系统处在稳定平衡状态的必要和充分条件为除了熵,自由能和吉布斯函数判据以外,还可以根据其它的热力学函数性质进行判断。例如,内能判据,焓判据等。
二、平衡条件
做为热动平衡判据的初步应用,我们考虑一个均匀的物质系统与具有恒定温度和恒定压强的热源相互接触,在接触中二者可以通过功和热量的方式交换能量。我们推求在达到平衡时所要满足的平衡条件和平衡稳定条件。
1.平衡条件
现在利用熵判据求系统的平衡条件。我们将系统和热源合起来构成一个孤立系统,设系统的熵为S,热源的熵为
因为熵是一个广延量,具有可加性,则孤立系统的总熵(用)为:(1)当达到平衡态时,根据极值条件可得:(2)由热力学基本方程
得
注意到组合系统是孤立的,必须满足
(3)
(4)将(3)代入(2)得
将(4)代入上式得
(5)
因为式中U,V为独立参量,可任意变化,所以为使上式成立,各系数必须恒等于零。由此可得:
(6)
表明系统和外界的温度相等,是系
表明系统和外界压 此式即为系统于外界保持平衡时应满足的条件。统和外界在热接触的情况下应满足的平衡条件,称为热平衡条件。强相等,称为力学平衡条件。
为了保证平衡状态的稳定性,系统除了满足平衡条件外,还要满足平衡稳定条件。
2、平衡稳定条件
由熵判据可知系统稳定平衡时需满足即
因为系统与热源发生相互作用而破坏平衡时,热源的状态改变很小,也就是对平衡态的偏离很小,所以可忽略。此时系统的平衡稳定条件简化为
(8)
(法一)由(3)式将上式再微分一次,略去
和
利用线性代数求得
(法二)根据泰勒展式。将(8)式展为
²
通过导数变换,根据线性代数关系求得,(9)是平衡的稳定性条件。其中系统的力学稳定性的要求。
反映了系统的热动稳定性的要求,反映了
§3.2 开系的热力学基本方程
一、几个概念k
1、元:把热力学系统的每一种化学组分称为一个组元,简称为元。
2、单元系:仅由一种化学组分组成的系统。例如纯水。
3、多元系:由若干种化学组分组成的系统。例如空气。
4、相:系统中物理和化学性质完全相同且成份相同的均匀部分称为一个相。
5、单相系(均匀系):仅有单一的相构成的系统称为单相系
6、复相系(多相系):有若干个相共存的系统称为复相系
又根据组成系统的组元数目,把复相系分为单元复相系和多元复相系。例如,水和水蒸气共存是单元二相系;盐是水溶液与水蒸气共存是二元二相系;
7、相变:在复相系中发生的相转变过程。
8、开系:在相变过程中,物质可以由一相变到另一相,因此一个相的质量或mol数是可以变的,这时系统为开系。
二、开系的热力学方程
1、G的全微分dG 从上一章我们知道,一个封闭的均匀系,在简单情况下,只需两个独立参量即可确定系统的状态,比如用T,P即可确定系统的吉布斯函数。但对均匀开放系统来说,为了确定其状态,还必须把组成系统的物质摩尔数n或者质量m考虑在内,通常选摩尔数,则此时吉布斯函数是T,P,n为独立参量,则吉布斯函数的全微分可扩展表示为
⑴
G是以 V,P,n为独立变量的特征函数
其中
⑵
称为化学势,它表示在温度、压强不变的情况下,增加一摩尔的物质时,系统吉布斯函数的增量。
µdn表示由于摩尔数改变了dn所引起的吉布斯函数的改变。
由于吉布斯函数是广延量,我们定义一个摩尔吉布斯函数(即1摩尔物质的吉布斯函数),则系统的吉布斯函数G(T,P,n)=ng(T,P)⑶
因此将⑶代入⑵式得 ⑷
这就是说,化学势µ等于摩尔吉布斯函数g,这个结果适用于单元相系。
2、dU 由
得内能的全微分
⑸
U是以S,V,n为独立变量的特征函数 ⑸式就是开系的热力学基本方程。它是的推广,可知,开系的内能U是以S,V,n为独立变量的特性函数。µ也可以表示为 ⑹
即化学势µ也等于在S,V不变的条件下,增加1mol物质时系统内能的改变。
3、dH 由焓的定义
得焓的全微分为
⑺
H是以S,P,n为独立变量的特性函数。
因此化学势也可表示为
4、dF
⑻
因自由能定义F=U-TS。可得自由能的全微分 —>dU)⑼
F是以T,V,n为独立变量的特性函数
(注:dV—因此 ⑽
(5)、(7)、(9)称为开系的热力学函数 如果定义一个热力学函数 巨热力势它的全微分为
⑿
J是以T,V,µ为独立变量的特性函数。如果已知巨热力势J(T,V,µ),其它热力学函数可用下面的偏导数求得:
⑾
⒀
由以上讨论可见,单元开系的热力学特性函数与闭系相比,仅增加了一个变数n,并由此引进了化学势的概念。
§3.3 单元系的复相平衡条件
一、平衡条件
1、推导:为简单起见,考虑一个孤立的单元两相系,我们用上角标α和β表示两个相,用,和,分别表示α和β相的内能,体积和摩尔数。因为是孤立系,所以总的内能,体积和摩尔数是恒定的,有 ⑴
若系统发生一个虚变动,则α相和β相的内能,体积和摩尔数分别改变:,和。孤立系统的条件式(1)要求: ⑵
由知,两相的熵变为
根据熵的广延性知,整个系统的熵变
⑷
根据熵判据知,当整个系统达到平衡时,总熵有极大值
因为⑷式中δU,δV,δn是独立变量,δS=0要求
,即: 热平衡条件
力学平衡条件 ⑸
相变平衡条件,⑶
2、讨论
如果平衡条件未被满足,复相系统将发生变化,变化将朝着熵增加的方向进行。
1)如果热平衡条件未能满足,变化将朝着 的方向进行。例如当 的α相传递到低温的β相去。
时,变化朝着的方向进行,即能量将从高温2)在热平衡满足的情况下,若力学平衡未能满足,变化将朝着的方向进行。例,当方向进行,即压强大的相α膨胀,压强小的相β收缩。
时,变化将朝着的3)在热平衡条件已满足,相变平衡条件未被满足时,变化将朝着的方向进行。例如当时,变化将朝着的方向进行,即物质将由化学势高的β相相变到化学势低的α相去,这是µ被称为化学势的原因。
二、单元复相系的稳定性条件仍可表示为
一、P—T图: ,§3.4 单元复相系的平衡性质
1、P—T图:实验指出:系统的相变与其温度和压强有关,在不同的温度和压强下系统可以有不同的相,气相、液相或固相。有些物质的固相还可以具有不同的晶格结构,不同的晶格结构也是不同的相。如水(H2O)构成的系统有三态:水蒸气(气)、水(液)、冰(固)。在不同的条件下,其相有:气态有一相;液态有一相;固态有六种不同的稳定态,它们分属于六相。在直角坐标中,单元系相同可以用P—T图表示。
由单元系相平衡条件,知
⑴
由式(1)决定的曲线 P=P(T)⑵ 称为相平衡曲线。画出P—T关系图即为相图。如图为单元系相图。
三条曲线将图分为三个区域,它们分别表示固相、液相和气相单相存在的温度和压强范围。化学势用,表示,在各自的区域内,温度和压强可以单独变化。如图中分开气、液两相的曲线AC,为汽化线,为气液两相的平衡线,在气化线上气液两相可以平衡共存。气化线上有一点C,温度等于C点时,液相不存在,因而汽化线也不存在,C点称为临界点,相应的温度和压强称为临界温度和临界压强。例如,水的临界温度是647.05K,临界压强是.分开液相和固相区域的曲线AB称为熔解线(或凝固线)。
⑶
分开气相和固相区域的曲线称为升华线。
⑷
由于固相在结构上与气液相差别很大,所以溶解曲线和升华曲线不存在端点,它们只能与其他相平衡曲线相交而中断。气化线、熔解线和升华线交于一点A,此点三相共存称为三相点,是三条相平衡曲线的交点。在三相点,物质的气、液、固相共存。对于某一物质三相点的温度和压强是确定的。例如,水的三相点温度为273.16K,压强为
.举例:以液—气两相的转变为例说明由一相到另一相的转变过程。
如图所示:系统开始处在由点1所代表的气相,如果维持温度不变,缓慢地增加外界的压强,则为了维持平衡态,系统的压强将相应地增大。这样系统的状态将沿直线1—2变化,直到与汽化线相交于2点,这时开始有液体凝结,并放出热量(相变潜热)。在点2,气、液两相平衡共存。如果系统放出的热量不断被外界吸收,物质将不断地由气相转变为液相,而保持其温度和压强不变,直到系统全部转变为液相后,如果仍保持温度不变而增加外界的压强,系统的压强将相应地增大,其状态将沿着直线2—3变化。
2、P—T图的热力学理论解释:
由吉布斯函数判据我们知道,在一定温度和压强下,系统的平衡状态是吉布斯函数最小的状态。各相的化学势是温度和压强确定的函数化学势,如果在某一温度和压强范围内,α相的较其它相的化学势低,系统将以α相单独存在。这个温度和压强范围就是α相的单相区域。在这个区域内温度和压强是独立的状态参量。
在气化线AC上,气液两相平衡共存。根据热平衡条件,力学平衡条件和相变平衡条件,可知,⑸
在三相点,三个相的温度、压强和化学势都相等,即
⑹
三相点的温度和压强由⑹式决确定。
(5)式给出两相平衡共存时压强和温度的关系,是两相平衡曲线的方程式。在平衡曲线上,温度和压强两个参量中只有一个可以独立改变P=P(T)。由于在平衡曲线上两相的化学势相等,两相的任意比例共存,整个系统的吉布斯函数都是相等的。即,这就是中性平衡。当系统缓慢地从外界吸收或放出热量时,物质将由一相转变到另一相而始终保持在平衡态,称为平衡相变。
二、克拉珀龙(Clapeyron)方程
1、Clapeyron方程 式子(5)为两相平衡曲线,由于对物质化学势缺乏足够的知识,我们并不知道每一相的化学势,所以相图上的曲线多是由实验直接测定的。但是由热力学理论可以求出相平衡曲线的斜率的表达式称为Clapeyron方程。
如图,在P—T图上画出两相平衡曲线。在相平衡曲线上取邻近的两点A(T,P)和B(T+dT,P+dP)在相平衡曲线上两相的化学势相等,即
⑺
两式相减得:
⑻
这个结果表明,当沿着平衡曲线由A(T,P)变到B(T+dT,P+dP)时,两相化学势的变化必然相等。化学势的全微分为
(9)其中和分别表示摩尔熵和摩尔体积。
所以有
则由(8)式得
整理变形得 ⑽
定义相变潜热:以L表示1摩尔物质由α相变到β相时吸收的热量,称为,摩尔相变潜热。因为相变时物质的温度不变,由熵的定义得
⑾
代入(10)式得 ⑿
此式称为(Clapeyron)方程,它给出两相平衡的斜率。
分析Clapeyron方程:当物质发生熔解、蒸发或升华时,混乱程度增加,因而熵也增加,相变潜热点是正的。由固相或液相转变到气相体积也增加,因此气化线和升华线的斜率dP∕dT是恒正的。由固相转到液相时,体积也发生膨胀,这时熔解线的斜率也是正的。但有些物质,如冰,在熔解时体积缩小,熔解线的斜率是负的。
2、蒸汽压方程
应用克拉珀龙方程,可以得出蒸汽压方程的近似表达式。与凝聚相(液相或固相)达到平衡的蒸汽称为饱和蒸汽。由于两相平衡时压强与温度间存在一定的关系,饱和蒸汽的压强是温度的函数。描述饱和蒸汽的方程称为蒸汽方程。
若α相为凝聚相,β相为气相,凝聚相的摩尔体积(每摩尔凝聚物的体积)远小于气相的摩尔体积,我们可以略去克拉珀龙方程(10)中的V,并把气相看作理想气体,满足,则克拉珀龙方程可简化为
分离变量: ⒀
如果更进一步近似地认为相变潜热与温度无关,积分上式,得
⒁
即蒸汽压方程的近似表达式。可以将式⒁写成
⒂
由式(15)可知,饱和蒸汽压随温度的增加而迅速的增加。由蒸汽压方程,可以确定出在一定温度下的饱和蒸汽压;反过来测定饱和蒸汽压,也可确定出该状态的温度。根据这个原理,可以制造蒸汽压温度计。蒸汽压温度计主要用与低温范围的测量。
§3.5液滴的形成
前面讨论两相平衡时没有考虑表面相的影响,因而得出的结果只适用于分界面为平面,或液面的曲率半径足够大时的情况。当分界面为曲面时,表面张力会对力学平衡条件和相平衡条件产生影响。
一、平衡条件:
我们首先讨论在考虑表面相以后系统在达到平衡时所要满足的平衡条件。将液滴与其蒸汽看作一个复合系统。设液滴为α相,蒸汽为β相,表面为γ相,三相的热力学基本方程分别为
⑴
设液滴与其蒸汽构成的复合系统已达到热平衡,则满足
⑵
且设温度和体积保持不变,因而我们可应用自由能判据推导系统的力学平衡条件和相变平衡条件。
设想在温度和总体积保持不变的条件下,系统发生一个虚变动,则三相的n,V和A分别发生,;,;δA的变化。由于在虚变动中的系统的总摩尔数和总体积保持不变,应用
⑶
则
⑷
满足
在三相温度相等的条件下,整个系统的自由能
即
⑸
为简单起见,假设液滴是球形的则,所以有,代入⑸式有 ⑹
由于和是任意的独立参量,上式中的系数必为零,所以得
(力学平衡条件)
(相平衡条件)⑺
力学平衡条件表明由于表面张力的存在,平衡时球形液滴内部的压强比蒸汽的压强大件。当r→时,过渡到,这正是分界面为平面时的力学平衡条相变平衡条件表明平衡时两相的化学势仍然相等,但化学势中的压强不相等,其关系由力学平衡条件确定。
二、液滴的形成(中肯半径或临界半径)
首先讨论气液两相平衡时分界面为曲面的蒸汽压强P´与分界面为平面的饱和蒸汽压的关系。已知在分界面(液面)为平面时,力学平衡条件是,相变平衡条件为
⑻
上式确定饱和蒸汽压与温度的关系。
对分界面为曲面的情况,设两相(气、液)平衡时的蒸汽压强为P´。由分界面为曲面的平衡条件 ⑼
给出曲面上的蒸汽压强P´与曲面半径r的关系。
现在利用(8)、(9)两式推导曲面上的蒸汽压强P´与平液面上的蒸汽压强P的关系。由于液体有不易压缩的性质,压强改变时液体的性质变化很小,所以可将液体的化学势在P的邻域展成泰勒(Taylor)级数,只取一级近似,得
⑽
由,得
⑾
将蒸汽看作理想气体,根据(2.4.15)和,可得蒸汽的化学势
⑿
其中 是温度的函数由上式得
⒀
由⑿ ⒀式得 ⒁
下面由⑻ ⑼ ⑾ ⒁四式得 ⒂
在实际问题中,通常,所以⒂式可近似写为
⒃
根据(16)式可以求出与压强为P´的蒸汽处于平衡的液滴半径为
⒄
称为中肯半径(或临界半径)。当因此气相将发生凝结,液滴连续增大;
时,,液相的化学势降低,当时,就有,因而液滴就要蒸发。
只有当时,蒸汽与液滴互相平衡。
由以上的讨论可以看出,在给定的温度T 压强P′下,要想在系统中出现凝结现象,就必须在系统中存在有半径大于相应于T, P′时的临界半径的液滴。这种液滴起着凝结核心的作用,如果系统非常纯净,或其中的小颗粒半径非常小,那么就会出现系统中的蒸汽压强已超过P,但并没有发生凝结,而形成过饱和蒸汽(过冷现象)。可见,过饱和蒸汽的出现,是由于蒸汽中缺少凝结核的缘故。
三、沸腾现象
对于沸腾现象的讨论,可以完全仿照液滴形成的讨论进行。但是应把液滴的半径r换成气泡的半径-r。所以可以得到两相共存的力学平衡条件为
⒅
表明气泡内的蒸汽压强衡。
将r变为-r后,又可得到
比液体的压强大才能维持气泡在液体中的力学平
⒆
表明为满足相平衡条件,气泡内的压强P′必须小于同温度下平液面上的饱和蒸汽压P 由(18)(19)式可以说明液体的沸腾现象及沸腾前的过热现象。液体沸腾时,内部有大量的蒸汽泡不断形成和扩大。在一班情况下,液体内部和器壁上都有很多小空气泡,它们作为汽化的核心,半径已足够大而接近于分界面为平面时,泡内的蒸汽压P′近似等于P,只有温度再上升一点使P′等于或大于液体的压强P时,气泡就会不断长大,出现沸腾现象。但是,如果液体中没有现成的空气泡做核,或由涨落而引起的气泡非常小,即使达到正常沸点时,也不会出现沸腾现象。这是由于相变平衡条件(19)式要求气泡中的压强P′必须小于分界面为平面的饱和蒸汽压P,不能满足力学平衡条件(18)式,气泡反而被液体压缩,所以不会产生沸腾现象。
在这种情况下,只有当温度较正常沸点更高,使P′增大到满足时,才能沸腾。液体的温度等于正常沸点而不沸腾的现象称为液体的过热现象。可见液体的过热现象的出现,是由于液体内缺少汽化核的缘故。
§3.6相变的分类
以前讨论的气、液、固之间的相变,两相的体积不相等,熵也不相等(有相变潜热),即相变时,有熵和体积的突变,而是另外一些量,如,等压膨胀函数α,等温压缩系数等发生突变,1933年,爱伦费斯特(Ehrenfest)提出一个理论,把相变分为许多级(类)一、一级相变
特征:相变时两相的化学势连续,但一级偏导数(熵和体积)有突变。
由,得
, 一级相变的数学表达式即,得
, ⑴ 可见通常的气、液、固之间的相变是一级相变。二、二级相变
特征:相变时两相的化学势及一级偏导数(熵和体积)连续,但二级偏导数(发生突变,,α,)即:
()()
所以 则可得,α,发生突变。但没有相变潜热和比容突变。
三、n级相变 类推到n级相变,特征:相变时两相的化学势及一级,二级……直到(n-1)级偏导数连续,但n级偏导数发生突变。
一级相变的相平衡曲线的斜率由Clapeyron方程给出,对于二级相变,由于,Clapeyron方程变为不定式,不能应用。但是爱伦费斯特根据二级相变在临近的两个点两相的比熵和比容变化相等, 的条件导出了二级相变点压强随温度变的斜率公式.证明:当两相系统在压强为P,温度为T的情况下达到平衡时,比容为,而在P+dP
和
T+dT的情况下平衡时,应有
即参量,则
但取T,P为独立
由此得到而
同样,对于两相平衡系统,有,由此得到称为爱伦费斯特方程。
人们习惯上把二级以上的相变通称为连续相变。由上可知,连续相变在相变点两相的化学势以及化学势的一级偏导数连续。连续相变的相变点称为临界点。通过实验和理论都可以分析连续相变,
第五篇:热力学统计物理(A参考答案)
宝鸡文理学院试题
课程名称 中学物理教育理论 适用时间与实践研究
试卷类别A适用专业、年级、班专升本
一.填空题(本题共 7 题,每空 3 分,总共 21 分)
1.假设一物质的体涨系数和等温压缩系数经过实验测得为:,则该物质的物态方程为:。
2.1 mol 理想气体,保持在室温下(K)等温压缩,其压强从1 准静态变为10,则气体在该过程所放出的热量为:焦耳。
3.计算机的最底层结构是由一些数字逻辑门构成的,比如说逻辑与门,有两个输入,一个输出,请从统计物理的角度估算,这样的一个逻辑与门,室温下(K)在完成一次计算后,产生的热量是:焦耳。
4.已知巨热力学势的定义为,这里是系统的自由能,是系统的粒子数,是一个粒子的化学势,则巨热力学势的全微分为:。
5.已知粒子遵从经典玻耳兹曼分布,其能量表达式为子的平均能量为:。
6.温度 时,粒子热运动的热波长可以估算为:。
7.正则分布给出了具有确定的粒子数、体积、温度 的系统的分布函数。假设系统的配分函数为,微观状态 的能量为,则处在微观状态 上的概率为:。
二.简答题(本题共 3 题,总共 30 分)
1.请从微观和统计物理的角度解释:热平衡辐射的吉布斯函数为零的原因。(10分)
2.请说说你对玻耳兹曼分布的理解。(10分)
3.等概率原理以及在统计物理学中的地位。(10分)
三.计算题(本题共 4 题,总共 49 分)
1.一均匀杆的长度为 L,单位长度的定压热容量为,在初态时左端温度为 T1,右端温度为 T2,T1 < T2,从左到右端温度成比例逐渐升高,考虑杆为封闭系统,请计算杆达到均匀温度分布后杆的熵增。(你可能要用到的积分公式为)(10分)
2.设一物质的物态方程具有以下形式:,试证明其内能和体积无关。(10分)
3.表面活性物质的分子在液面上作二维自由运动,可以看作是二维气体。请用经典统计理论计算:
(1)二维气体分子的速度分布和速率分布。(9分)
(2)二维气体分子的最概然速率。(4分)
4.(1)证明,在二维情况下,对于非相对论粒子,压强和内能的关系为:
这里,是面积。这个结论对于玻尔兹曼分布、玻色分布和费米分布都是成立的。(8分)
(2)假设自由电子在二维平面上运动,电子运动为非相对论性的,面密度为,试求: 0 K 时电子气体的费米能量、内能和简并压强。(8分)
热力学.统计物理(A卷)答案
一.填空题(本题共 7 题,每空 3 分,总共 21 分)
1.pVT
const
2.RT ln 105.74103 3.kT ln 22.8710-21
4.dJSdTpdVNd 5.2kT 6.
h2mkT
ES
或者
h2mkT
7.s
e
kT
Z
二.简答题(本题共 3 题,总共 30 分)
1.请从微观和统计物理的角度解释:热平衡辐射的吉布斯函数为零的原因。(10分)
答:(1)热力学中研究的热平衡辐射系统,是一个和腔壁达到热力学平衡的系统,热力学理论可以证明,它的吉布斯函数为零。……………………(2分)
(2)从微观角度看,平衡辐射场可以认为是光子气体,每一个单色平面波对应于一个能量和动量确定的光子,腔壁中的辐射场对应于能量和动量从零到无穷大连续取值的光子气体。辐射场和腔壁不断发生热交换,从微观角度来看,相当于交换光子,因此,腔壁中的光子数不守恒。(2分)
(3)光子是玻色子,满足玻色分布。在确定玻色分布公式的时候,由于光子数不守恒,因此确定第一个拉氏乘子的条件不存在,从物理上理解,这个拉氏乘子就应该为零,因为势为零。………………(4分)
(4)化学势即为摩尔吉布斯函数(或者单个光子的吉布斯函数),光子气体的吉布斯函数等于摩尔数(或者平均分子数)乘上化学势,因此光子气体的吉布斯函数为零。…………………(2分)2.请说说你对玻耳兹曼分布的理解。(10分)
答:(1)系统各个能级中的粒子数,构成一个数列,称为分布。物理上,需要在给定的分布下,确定系统的微观状态。…………………………………(3分)
(2)玻耳兹曼系统是这样的一个系统,它的各个粒子是可以分辨的,因此,要确定玻耳兹曼的微观状态,就需要确定每一个粒子的微观状态,给出玻耳兹曼系统的一个分布,只是确定了每一个能级的粒子数,但是这些粒子是哪一些粒子并没有确定。…………………………………(3分)
(3)由于等概率原理,在给定的宏观状态下,任何一种微观状态出现的概率是一样的。不同的分布对应的微观状态数是不一样的,因此,对应微观状态数最多的分布,出现的概率最大,这就是最概然分布。玻耳兹曼系统的最概然分布就是玻耳兹曼分布。……………………………(4分)3.等概率原理以及在统计物理学中的地位。(10分)
答:(1)作为热运动的宏观理论,热力学讨论的状态是宏观状态,由几个宏观参量表征,例如对于一
kT,故化学
个孤立系统,可以用粒子数N、体积V 和能量E 来表征系统的平衡态,状态参量给定之后,处于平衡态的系统的所有宏观物理量都具有确定值。…………………………………………(2分)
(2)系统的微观状态是指构成系统的每一个粒子的力学运动状态,显然,在确定的宏观状态之下,系统可能的微观状态是大量的,而且微观状态不断地发生及其复杂的变化,例如,对于一个没有相互作用的系统中,总能量是由N 个单粒子能量的简单求和得到的,因此,将会有大量不同的方式选择个别粒子的能量使其总和等于总能量。………(2分)
(3)等概率原理认为:在任意时刻,该系统处于各个微观态中的任意一个状态都是同等可能的,也就是概率是一样的。对于一个孤立系统,数学表述就是:设所有可能的微观状态的数目是粒子数N、体积V 和能量E的函数:(N,V,E),则每一个微观状态的概率为
。……(3分)
(4)统计物理认为,宏观物理量是相应的微观物理量的系综平均值,要求系综平均值,就必须知道系统在各个微观状态出现的概率。等概率原理给出了孤立系统的各个微观状态出现的概率,因此,只要知道总的微观状态数,就可以计算各种宏观物理量。这样,等概率原理在连接宏观物理量和相对应的微观物理量之间建立了一个可以计算的桥梁。当然,实际上,对给定的孤立系统,计算总的微观状态数一般是很困难的,但是它是分析其他问题(如分析正则分布和巨正则分布)的基础,等概率原理也称为微正则分。……………………………………(3分)
三.计算题(本题共 4 题,总共 49 分)
1.一均匀杆的长度为L,单位长度的定压热容量为cp,在初态时左端温度为 T1,右端温度为T2,T1T2,从左到右端温度成比例逐渐升高,考虑杆为封闭系统,请计算杆达到均匀温度分布后杆的熵
增。(你可能要用到的积分公式为ln xdx
T2T1
L)(10分)dxln xx。T2T
1答:设杆的初始状态是左端l0 温度为 T1,右端lL 为T2,从左到右端,位于l 到ldl的初始温度为TT1
l,达到平衡后温度为
T1T
2,这一小段的熵增加值为:
T1T2
dTT
l
dScpdl
T1
T2T1
L
cpdlln
T1
T2T1
L
………………………………(4分)
l
根据熵的可加性,整个均匀杆的熵增加值为
T1T2S
dS
L0
cpdlln
T1
T2T1
L1
l
L
L0
cpdlln
T1T2
LTT1
cpdllnT12
0L
l
cpLln
T1T2
T1T2
cp
T2T1
L1
T2T1
L
d(T2T1
L
TT1
l)lnT12l
L
cpLlncp
T2
T1
dxln x
cpLln
T1T2
cpL
1T2T1
T2ln T2T1ln T1T2T1……………(6分)
2.设一物质的物态方程具有以下形式:pf(V)T,试证明其内能和体积无关。(10分)
证明:以(V,T)作为自变量,则熵的全微分为:
SSdSdTdV………………………………(3分)
TVVT
利用热力学基本微分方程,有:
dUTdSpdV
SSTdTTdVpdV
VTTVSS
TdTTpdV
TVVT
因此有:
US
Tp………………………………(3分)VTVT
Up
Tp VTTV
由麦氏关系代入上式,可以得到: 利用物态方程可以知:故有:
p
f(V)TV
Up
TpTf(V)p0…………………………(4分)得证。VTTV
3.表面活性物质的分子在液面上作二维自由运动,可以看作是二维气体。请用经典统计理论计算:
(1)二维气体分子的速度分布和速率分布。(9分)(2)二维气体分子的最概然速率。(4分)
答:玻耳兹曼分布的经典表达式是
ale
1
lh0
r
…………………………………………(2分)
在没有外场时,二维情况下的分子质心运动能量的经典表达式为 2m2m
在面积A内,分子质心平动动量在dpxdpy范围内的状态数为
Ah
p
(pxpy)
dpxdpy
因此,在面积A内,分子质心平动动量在dpxdpy范围内的分子数为
Ah
e
12mkT
(pxpy)
dpxdpy
参数由总分子数为N的条件定出
积分出,得
Ah
e
12mkT
(pxpy)
dpxdp
y
N
e
12mkT
12mkT
NA
h0
因此,质心动量在dpxdpy范围内的分子数为
N
12mkT
e
(pxpy)
dpxdpy
用速度作为变量,pxmvx;pymvy,上式化为:
N
m2kT
e
m2kT
(vxvy)
dvxdvy
这就是在面积A内,分子在dvxdvy范围内的分子数。用nN面积内,速度在dvxdvy范围内的分子数为
f(vx,vy)dvxdvyn
m2kT
e
m2kT
(vxvy)
A
表示单位面积内的分子数,则在单位
dvxdvy…………………………(5分)
这就是二维情况下的速度分布律。归一化条件为:
f(vx,vy)dvxdvy
n2kT
m
e
m2kT
(vxvy)
dvxdvyn
m2kT
化为极坐标,并对角度进行积分,可得二维情况下的速率分布律
f(v)dvn
最概然速率vm满足条件:
df(v)dv
n
mdkTdv
(e
m2kT
v
mkT
e
v
vdv…………………………………(2分)
v)0
由此得到:
vm
kTm
……………………………………………(4分)
在这个速率附近,分子数最多。
4.(1)证明,在二维情况下,对于非相对论粒子,压强和内能的关系为:
p
UA
这里,A是面积。这个结论对于玻尔兹曼分布、玻色分布和费米分布都是成立的。(8分)(2)假设自由电子在二维平面上运动,电子运动为非相对论性的,面密度为nN子气体的费米能量、内能和简并压强。(8分)
A,试求 0 K 时电
答:(1)不妨假设二维空间为正方形,边长为L,根据周期性边界条件,二维自由粒子在x和y方向的动量分量的可能取值为:
pxpy
hLhL
nx;nx0,1,2, ny;ny0,1,2,
1h
因此对于非相对论的自由粒子,能量为:
n
xny
p
2m
2mL
(h)(nxny)
222
2mA
(nxny)aA
221
以单一指标l代替(nx,ny),上式可以记为: laA1 因此当有N个粒子存在时,产生的压强为:
p
l
lA
al
l
(1)aA
2
alA
1
lal
l
UA
…………………(8分)
(2)在面积AL2内,在ppdp内,自由粒子的量子态的数目为:
(Lh)2pdp
由于电子自旋为
Ah,因此利用自由粒子的非相对论能量动量关系
p
2m,得到在d内,自由电子的量子态的数目为:
2md
4Amh
d
根据费米分布,一个量子态上的平均电子数为:
f
1e
1
在面积A内,在d内,自由电子的数目为:
he1he1
在T0K时,对上式积分,可以确定费米能量(零温时的化学势):
(0)
dN
4Am
d
4Am
()
kT
d
N
4Amh
dF(0)
h
4m
n……………(4分)
面积A内,在d内,自由电子的能量为:
h
在T0KdU
4Am
1e
()
kT
1
d
时,对上式积分,得到自由电子的内能为:
U(0)
4Amh
(0)
d
N(0)………………………………(2分)
在T0K时的简并压强为:
p
U(0)A
12
n(0)………………………………………(2分)