第一篇:钢铁冶金与成型论文(钢铁冶金与成型认识)
钢铁冶金与成型的认识
人类社会与冶金的关系密切且历史久远,伴随着社会的发展,每个历史时期的人们从事生产活动和生活中都离不开金属材料,从远古时代,就开始利用自然状态下存在的少数几种金属,如:金、银、铜及陨石铁,然后发现在矿石中提取金属的方法,创造了青铜和铁。人类利用的金属日益增多,到如今,各种金属广泛运用,尤其生铁和钢的运用,对国民经济起巨大的带动作用,它们用途最广,生产量最多。人们长期把钢和钢材的产量、品种、质量作为一个国家工业,农业,国防和科学现代化的重要标志之一。
金属从矿石中提取,其主要成分是金属的氧化物及硫化物。从矿石提取金属及金属化合物的生产过程叫提取冶金,又称化学冶金,其过程不同分成火法冶金,湿法冶金及电冶金,电冶金包括电炉冶炼、熔岩及水溶液的电解。火冶金过程是物理化学原理在高温化学反应中的运用,湿法冶金是水溶液化学及电化学原理的应用,火法是主要的应用。火法冶金生产率高,流程短,设备简单及投资省,就是不利于处理成分结构复杂的贫矿。火法冶金过程包括焙烧、熔炼、精练、蒸馏、离析等过程,其内进行的化学反应则是热分解、还原、氧化、硫化、卤化、蒸馏等。
钢铁冶金工艺流程:铁矿石--炼铁,提取铁--制取钢。其工序主要是三个:,炼铁,即从矿石或精矿中提取粗金属—
—生铁。目前最常用的方法有高炉炼铁,直接还原和熔融还原铁三种方法。炼钢,即把生铁的过多元素及杂质去除,把钢液中的氧去除,把其浇铸成钢锭或钢坯,主要方法和连续铸造过程有转炉炼钢、电炉炼钢和平炉炼钢,O.C.C.连铸技术,钢锭的液芯轧制,钢锭的液芯轧制。二次精练,及将炼钢过程的某些精练工序转移到炉外盛钢桶或特殊反应炉中继续完成或深度完成。各生产过程的的复杂反应,含有气液固三态的多种物质的相互作用,形成了复杂的冶金过程。
将矿石冶炼成钢铁后,就需要把它做成我们需要的材料型式,这就要用到钢铁成型,钢铁成型主要有三种方法:铸造、冲压、焊接。
铸造一般有砂型铸造、金属模铸造、离心铸造、真空铸造、消失模铸造等等。
砂型铸造是在砂型中生产铸件的铸造方法。由于砂型铸造所用的造型材料价廉易得,铸型制造简便,对铸件的单件生产、成批生产和大量生产均能适应,长期以来,一直是铸造生产中的基本工艺。金属模铸造俗称硬模铸造,是用金属材料制造铸件,并在重力下将熔融金属浇入铸型获得铸件的工艺方法。离心铸造将液态金属浇入旋转的铸型里,在离心力作用下充型并凝固成铸件的铸造方法。离心铸造用的机器称为离心铸造机。按照铸型的旋转轴方向不同,离心铸
造机分为卧式、立式和倾斜式3种。卧式离心铸造机主要用于浇注各种管状铸件;立式离心铸造机则主要用以生产各种环形铸件和较小的非圆形铸件。真空铸造真空铸造是使用通风铸模的工艺。熔化的金属依靠空气压力流入铸模,然后清除空气,形成真空;这种铸造方法主要用于具有精巧细节的小零件或珠宝。消失模铸造又称实型铸造是将与铸件尺寸形状相似的石蜡或泡沫模型粘结组合成模型簇,刷涂耐火涂料并烘干后,埋在干石英砂中振动造型,在负压下浇注,使模型气化,液体金属占据模型位置,凝固冷却后形成铸件的新型铸造方法。
冲压也就是模具,包括冷加工和热处理的正火、退火、回火、淬火四把火等。
焊接属于连接技术,主要有手工电弧焊、埋弧焊、电渣焊、气体保护焊、等离子焊、钎焊等等。
在21世纪的今天,轻重工业高速发展,高新技术产业也开始暂露头角,而钢铁也越来越成为经济发展不可或缺的材料,也是人类社会发展的不可或缺的材料!因此掌握钢铁冶金与成型的基本知识,也应该是当代大学生必备的素质之一!而以上则是我对钢铁冶金与成型的基本认识。
第二篇:关于钢铁冶金成型的认识
关于钢铁冶金及成型的认识
109124232文法学院行政管理102班 孙漫丽
我国是钢铁冶金起源最早的国家之一,自春秋战国时代就有钢铁冶炼,开始利用自然状态下存在的丰富的铁矿石,有色金属,煤炭等资源,逐步从矿石中提取金属。伴随着人类社会的进步,冶金工业不断发展,在国民经济中占据重要地位。钢铁冶金对经济有巨大拉动作用,钢铁和钢材产量被视为国家工业水平和生产能力的重要标志。
冶金是研究如何经济地从矿石或其他原料中提取金属或金属化合物,并用各种加工方法制成具有一定性能的金属材料的科学。提取冶金学是研究如何从矿石中提取金属或金属化合物的生产过程,因为有化学反应又称为化学冶金。物理冶金是指通过成型加工制备有一定性能的金属或合金材料,研究其组成,结构的内在联系以及在各种条件下的变化规律,为有效地使用和发展特定性能的金属材料服务。
化学冶金因过程不同分为活法冶金,湿法冶金以及电冶金,钢铁冶金主要采用火法冶金。火法冶金包括选矿,干燥,焙烧,煅烧,烧结,球团,熔炼,精炼等工序。其具有生产率高,流程短,设备简单及投资省的优点。
钢铁冶金的流程包括:铁矿石的提炼,提取铁制取钢。工序
主要有炼铁提取生铁,炼钢,二次精炼。炼铁目前常用方法有高炉炼铁,直接还原和熔融还原。
将铁矿石或经烧结后在高炉内冶炼成生铁,用铁水炼成钢,然后将钢水铸成钢锭或连铸坯,经轧制等塑性方法加工成各种用途的钢材。这里就要用到钢铁成型,主要有三种方法:铸造,冲压,焊接。
铸造是金属或合金在锻锤或压力机的压力作用下变形并获得一定形状尺寸和性能的塑性加工过程,一般有砂型铸造、金属模铸造、离心铸造、真空铸造、消失模铸造等等。冲压也就是模具,利用压力机通过模具对板材料施加压力,使其产生分离或塑性变形获得一定形状尺寸和性能制件的成型方法,包括冷加工和热处理的正火、退火、回火、淬火四把火等。焊接属于连接技术,主要有手工电弧焊、埋弧焊、电渣焊、气体保护焊、等离子焊、钎焊等等。
就我所学的行政管理专业而言,钢铁冶金及成型工业作为我国工业重要组成部分,应在注重提高产量和效率的同时,加强对工业生产过程的有效管理以提高生产效益。在完善钢铁冶金及成型这一完整生产链时,应注重减少能源损耗,加快工艺创新,提高生产速度和质量。还有应注重生产员工的效率提高和技能培养,对员工形成有效管理。除此之外,加强市场信息交流,研发新的工艺和品种,提高产业附加值,增强工业活力。在我看来,掌握钢铁冶金成型的基础知识对当代大学生而言十分必要,而以
上就是我对钢铁冶金及成型的初步认识。
第三篇:结合经济学对钢铁冶金与成型的认识
chenlin 第 1 页 2013-4-
21对钢铁冶金与成型的认识
虽然我学的专业是经济学,但是我自从上了工业概论这门课以后,我对钢铁冶金与成型这方面有了初步的认识和更深层次的了解。接下来,我就从我的专业知识出发来谈一谈对钢铁冶金与成型的小小认识。
21世纪的今天,轻重工业高速发展,高新技术产业也开始崭露头角,而钢铁也越来越成为经济发张不可或缺的材料,也是人类社会发展的重要基础。因此,掌握钢铁冶金与成型的基本认识,是相当有必要的,也应该是当代大学生必备的素质之一。下面我就结合自己的专业知识浅谈钢铁冶金与成型的认识。
人类社会的历史发展和冶金的发展关系密切且历史久远,伴随着社会的发展,每个历史时期的人们从事生产活动和生活中都离不开金属材料。人类早在远古时代,就逐渐的学会开始利用金属,不过那些金属是自然状态下存在的少数金属,如:金、银、铜及陨石铁,后来才逐渐发现了从矿石中提取金属的方法。首先得到的是铜及其合金—青铜,日后又冶炼出了铁。人类利用的金属日益增多,到如今,各种金属得到广泛运用,尤其是对生铁和钢的运用,对国民经济起巨大的带动作用,它们用途最广,生产量最多。人们长期把钢和钢材的产量、品种、质量作为一个国家工业,农业,国防和科学现代化的重要标志之一。
金属从矿石中提取,其主要成分是金属的氧化物及硫化物。从矿
石中提取金属及金属化合物的生产过程叫提取冶金。又称化学冶金,其过程不同分成火法冶金,湿法冶金及电冶金,电冶金包括电炉冶炼、熔岩及水溶液的电解。火冶金过程是物理化学原理在高温化学反应中的运用,湿法冶金是水溶液化学及电化学的应用,火法是主要的应用。火法冶金生产率高,流程短,设备简单及投资省,就是不利于处理成分结构复杂的贫矿。火法冶金过程包括焙烧、熔炼、精炼、蒸馏、离析等过程,其内进行的化学反应则是热分解、还原、氧化、硫化、卤化、蒸馏等。
钢铁冶金的基本生产过程:铁矿石(高炉的还原过程)--炼铁(氧化过程)--铸锭(连铸)--轧制—钢材,炼铁—铸造生铁—铸造。其工序主要是三个:炼铁,即从矿石或精矿中提取金属—生铁。目前最常用的方法有高炉炼铁,直接还原和熔融还原铁三种方法。炼铁,即把生铁的过多元素及杂质去除,把钢液中的氧去除,把其浇铸成钢锭或钢坯,主要方法和连续铸造过程有转炉炼钢、电炉炼钢和平炉炼钢,OCC连铸技术,钢锭的液芯轧制。二次精炼,及将炼钢过程的某些精炼工序转移到炉外盛钢桶或特殊反应炉中继续完成或深度完成。各生产过程的复杂反应,含有气液固三态的多种物质的相互作用,形成了复杂的冶金过程。随着科学技术的快速发展产生了新的工艺流程:直接氧化—电弧炉炼铁—连铁连轧。
把钢铁做成我们需要的材料型式,这就要用到钢铁成型,钢铁成型主要有三种方法:铸造成型、冲压成型、焊接成型。
铸造成型一般有砂型铸造、金属模铸造、离心铸造、真空铸造、消失模铸造等。
冲压成型也就是模具,包括冷加工和热处理的正火、退火、回火、淬火等。
焊接成型属于连接技术,主要有手工电弧焊、埋弧焊、电焊、气体保护焊、等离子焊、钎焊等。
我国钢铁行业曾出现在持续多年的高位增长后,国内钢铁常量增长显著放缓,出口短期反弹迅猛,市场价格宽幅震荡,冲高回落明显,利润增幅同比下降,企业亏损面扩大,优于市场需求放缓,国内钢铁行业深幅调整,这是全球经济发展失衡。2010年,钢铁行业面临的国内外形势更加严峻,钢铁雪球增长进一步放缓,市场维持弱势平衡格局。今后,国内外的钢铁市场竞争必定会日益激烈。
以上就是我这个外行人对钢铁冶金与成型这方面做出自己浅浅的认识。
第四篇:钢铁冶金论文(DOC)
炼钢中脱磷的研究
1.前言
一般情况下,磷是钢材中的有害成分,使钢具有冷脆性。磷能溶于a-Fe中(可达1.2%),固溶并富集在晶粒边界的磷原子使铁素体在晶粒问的强度大大增高,从而使钢材的室温强度提高而脆性增加,称为冷脆。但含磷铁水的流动性好,充填性好,对制造畸形复杂铸件有利。此外,磷可改善钢的切削性能、易切削钢中磷含量可达0.08%一0.15%。2.转炉的脱磷
2.1转炉脱磷的基本原理
通常认为,磷在钢中是以[Fe3P]或[Fe2P]的形式存在,为方便起见,均用[P]表示。炼钢过程中的脱磷反应是在金属液与熔渣界面进行,首先是[P]被氧化成(P2O5),然后与(CaO)结合成稳定的磷酸钙,其反应式可表示为: 2[P]+5(FeO)+4(CaO)==(4CaO·P2O5)+5[Fe] 或 2[P]+5(FeO)+3(CaO)=(3CaO2·P2O5)+5[Fe] 2.2影响脱磷的因素
磷的氧化在钢渣界面进行,按炉渣分子理论的观点,反应式如下: 2[P]+5(FeO)=(P2O5)+5[Fe]---Q1(1)3(FeO)+(P2O5)=(3 FeO·P2O5)---Q(2)
(3 FeO·P2O5)+4(CaO)=(4CaO·P2O5)+ 3(FeO)---Q(3)有式(1),(2),(3)可推导出(4):
2[P]+5(FeO)+4(CaO)=(4CaO·P2O5)+5[Fe]---(4)式(4)表明,高碱度、高氧化性渣对脱磷有利,去磷是放热反应,故从热力学讲低温条件有利于去磷反应的进行。
(1)氧化性对炉渣去磷能力影响的理论分析
由上式不难看出(FeO)在脱磷过程中起双重作用,一方面作为磷的氧化剂起氧化磷的作用;另一方面充当把(P2O5)结合成(3 FeO·P2O5)的基础化合物的作用。可以认为渣中存在(FeO)是去磷的必要条件。由于(3 FeO·P2O5)在高于1470℃时不稳定的,因此只有当熔池内石灰熔化后生成稳定的化合物(4CaO·P2O5)才能达到去磷的目的。(2)炉渣碱度对炉渣去磷能力的影响理论分析
CaO具有较强的脱磷能力,(4CaO·P2O5)在炼钢温度下很稳定,因此,提高炉渣碱 度可以提高脱磷的效率。但不能无止尽的提高炉渣的碱度,如果CaO加入过多,炉渣的熔点增大,CaO颗粒不能完全熔入炉渣,则导致炉渣的流动性减弱,黏度增强,从而影响脱磷反应在钢液与炉渣之间的界面进行而降低脱磷效果。另外,炉渣碱度与氧化铁的活度也有关系,过高碱度减少氧化铁的活度,从而降低脱磷效果。(3)温度对炉渣去磷能力影响的理论分析
温度对去磷反应的影响从两个方面来看:一方面,去磷反应是放热反应,高温不利于去磷,然而,熔池温度的提高,将加速石灰的熔化,提高熔渣碱度,从而提高磷在炉渣和钢水中的分配比;另一方面,高温能提高渣的流动性,能加强渣—钢界面反应,提高去磷速度,所以过低的温度不利于去磷。
总之脱磷的条件为:高碱度、高(FeO)含量(氧化性)、良好的流动性熔渣、充分的熔池搅动、适当的温度及大渣量。2.3回磷现象
所谓的回磷现象,就是磷从熔渣中又返回到钢液中。成品钢中磷含量高于终点钢中的磷含量也属于回磷现象。熔渣的碱度或氧化亚铁含量降低,或石灰划渣不好,或温度过高等,均会引起回磷现象。出钢过程中,由于脱氧合金加入不当,或出钢下渣,或合金中磷含量较高等因素,也有导致成品钢中磷高于终点钢[P]含量。由于脱氧,炉渣碱度、(FeO)含量降低,钢包内有回磷现象,反应式如下:
2(FeO)+[Si]==(SiO2)+2[Fe]
(FeO)+[Mn]==(MnO)+[Fe]
2(P2O5)+5[Si]==5(SiO2)+4[P]
(P2O5)+5[Mn]==5(MnO)+2[P]
3(P2O5)+10[Al]==5(Al2O3)+6[P] 通常采用避免钢水回磷措施:挡渣出钢,尽量避免下渣;适当提高脱氧前碱度;出钢后向钢包渣面加一定量石灰,增加炉渣碱度;尽可能采取钢包脱氧,而不采取炉内脱氧;加入钢包改质剂。
2.4 还原脱磷
还原条件下进行脱磷近年来也很受关注,要实现还原脱磷,必须加入比铝更强的脱氧剂,使钢液达到深度还原。通常加入Ca,Ba或CaC2等强还原剂。还原脱磷反应:
3[Ca]+2[P]===3(Ca2+)+2(P3-)3[Ba]+2[P]===3(Ba2+)+2(P3-)3CaC2(s)+2[P]===3(Ca2+)+2(P3-)+6[C] 还原脱磷加入强还原剂的同时,还需加入CaF2,CaO等熔剂造渣。还原脱磷一般是在金属不宜用氧化脱磷的情况下使用,如含铬高的不锈钢,采用氧化脱磷会引起铬的大量氧化。还原脱磷后的渣应立即去除,否则渣中P3-又会被重新氧化成PO43-而造成回磷。【1】 3 钢渣在微波场中还原脱磷
微波技术在加热高电介质耗损原料方面是一种简单而有效的方法, 在冶金还原领域有着广阔的应用
前景。相较于传统加热还原工艺需要较高的温度和损耗, 具有体积性加热、选择性加热、非接触性加热、即时性等加热特性的微波场在较低温度下能够提供更多的热量。因为通过渣料表面点位与微波能的强烈作
用, 物料表面点位选择性被很快加热至很高温度。铁氧化物是一种高微波响应材料, 而且如果Fe3+ /(Fe2++ Fe3+)的比率在一个合适的范围内, 钢渣能得到有效加热, 碳质微粒物质具有良好的微波吸收特性, 有利于迅速加热原料。
3.1结果与讨论
实验表明钢渣为微波的良吸收体, 如图3所示, 当时间达到15~ 20min时, 纯渣料及各配碳量条件下的结构示意图
图3 物料的微波升温曲线 图1 微波冶金试验炉
物料温度均达到1000e 并呈线性稳定增加。还原结果如图表4所示, 温度对还原反应的影响很大, 随着温度的上升, 脱磷率稳定增加。1400e 时脱磷率可达到87.15%。当温度达到1200e 时, 渣料中出现大量直径小于1mm的金属颗粒, 并且呈均一弥散分布。由此证明微波体无温度梯度的加热方式使其中不同位置的物料获得均一稳定的加热特性。当温度达到1300e 时, 渣料中即出现易从渣相分离出的直径在10~ 20 mm的大颗粒金属球.碳热还原钢渣的反应机理是: Ca3(PO4)2 + 5C= 3CaO+ 1 /2P4 + 5CO 该反应在超过1000e 时能自发进行, 传统工艺中温度达到1400e 才能迅速反应。微波场中当温度达到1200e 脱磷率就已经达到85% 以上。所实验表明, 较传统加热工艺, 微波促进钢渣脱磷, 使得还原脱磷反应在低温下得以实现。
图4 温度对脱磷率的影响
实验表明Ceq对还原反应的影响显著。在微波场中升温到1300e 保温20min检测发现, 随着碳当量的增加, 渣中铁和磷含量降低, 脱磷率增加。如图6,当Ceq= 1时, 即体系中的还原剂刚好够还原钢渣氧化物所用, 由于体系开放, 部分碳质还原剂在空气环境下微波辐射氧化消耗, 使得还原剂的有效参与率降低,从而导致脱磷率较低。随着Ceq增加, 当Ceq= 3时, 碳还原反应剧烈, CO气泡从坩埚界面和料面不断冒出,遇空气燃烧剧烈, 此时的脱磷率达到8619%。实验发现配碳量较高情况下气化脱磷占总脱磷率比重很大。主要由于高还原剂条件下产生大量CO气体, CO上升过程将更多P(g)带出, 促进了磷的气化逸散。此外,微波加热在1300e 下即可较充分的发生还原反应, 此温度尚未产生宏观熔池, 为固固相反应, 料柱松散, 磷蒸汽逸散阻力小, 易被CO气体携带出体系。上述结果表明, 钢渣的还原效果很大程度上还是受还原剂的影响, 碳当量越高, 铁和磷在渣铁间的分配比越小, 金属聚集阻力和磷的气化阻力越小, 即高碳当量有利于磷的还原和迁移。但过高的碳当量在反映出其对于体系升温有负面影响。所以选择合适的过量碳当量是必要的。本次实表明, 2~ 3倍碳当量既能返祖快速升温启动和促进脱磷反应, 又能避免碳资源的浪费。为研究保温时间对还原效果的影响, 在1300e , 3Ceq条件下, 分别设定保温时间0 min、10 min、20m in、30 min进行对比实验, 结果如图7。实验证明, 保温时间越长, 渣相中出现Fe2C合金球直径越大, 可回收金属量越大, 脱磷率也越高。这说明适当延长保温时间, 能提供更长时间和更多热量促进金属球的聚集长大,利于合金采集和回收。
3.2钢渣微波场中还原脱磷结论
(1)实验结果表明, 转炉钢渣为微波的良吸收体可在20m in被迅速加热至1000e 以上。微波加热能促进钢渣的还原反应, 实现钢渣在1400e 以下的低温还原脱磷。平均脱磷率达85% 以上, 最优可达9115%。
(2)微波碳热还原钢渣反应生成的Fe2C合金球, 最大直径可达18mm, 易从渣中提取。其余呈均一弥散分布于残渣中, 直径大多在3mm以下, 需筛分与渣相分离。
(3)在1100e ~ 1400e 低温范围内, 钢渣脱磷率随温度升高而增大, 1100e 时脱磷率达到80% , 1400e时脱磷率增高至8715%。适当增加保温时间, 更利于还原反应的进行。
(4)钢渣的还原效果很大程度受还原剂影响。金属收得率和脱磷率随着碳当量Ceq的增加而增加,1Ceq时脱磷率67%, 3Ceq钢渣脱磷率上升至86.19%。【2】 4 预熔脱磷剂进行铁水脱磷的实验
4.1w(CaO)/w(Fe2O3)对预熔脱磷剂脱磷效果的影响
根据脱磷的主要反应式(式(1))可知, 脱磷剂中Fe2O3 在铁水中的溶解氧[ O] 能将铁水中的[ P] 氧化为P2O5 , 但P2O5 不稳定, 必须和碱性氧化物(CaO)反应生成稳定的磷酸盐渣(4CaO·P2 O5 或3CaO·P2 O5), 才能使铁水中的磷脱除掉。通过实验欲找到一个能使铁水中磷含量降到最低的w(CaO)/w(Fe2O3)比值, 以达到最佳的脱磷效果。2[ P]+5(FeO)+4(CaO)=4(CaO)+(P2O5)+ 5[ Fe](1)为此, 在1350℃下固定w(CaF2)为10%不变,改变预熔脱磷剂中w(CaO)和w(Fe2 O3)的比值进行脱磷实验, 脱磷剂加入量为铁水量的10%, 处理时间为10 min, 结果如图2 所示。可看出, 在w(CaO)/w(Fe2O3)的值介于0.5~ 1.0 之间时, 随比值增大脱磷率逐渐上升, 当w(CaO)与w(Fe2O3)的比值为1.0 左右时, 脱磷率最大, 为95.22%, 这主要是由于w(CaO)/w(Fe2O3)约为1 时, 使铁水中[ P] 与[ O] 充分结合生成的P2O5 能被CaO 完全固定为4CaO·P2O5 或3CaO·P2 O5 , 实现较好的脱磷效果;而在w(CaO)/ w(Fe2 O3)介于1.00~1.25 之间时, 随比值增大脱磷率逐渐下降。
图
2w(CaO)/ w(Fe2O3)对脱磷率的影响
4.2 助熔剂含量对预熔脱磷剂脱磷效果的影响
固定w(CaO)/w(Fe2O3)=1.0不变, 改变助熔剂CaF2 的含量在6% ~ 15% 之间变化进行脱磷实验。处理10 min 的结果如图3 所示, 可以看到在CaF2 含量为6% 时, 脱磷率相对较低, 进一步增加CaF2 的含量, 当w(CaF2)为10% 时, 脱磷率最大,为96.24% , 使铁水中的磷由0.21% 降低为0.0079%, 这主要因为CaF2 与CaO 能形成低熔点化合物, 经预熔处理后脱磷剂熔点和粘度得到了降低 ,使脱磷反应的动力学条件得到了明显改善;当w(CaF2)进一步增加为15%时, 脱磷率有一定程度的降低, 为91.43%。由于在脱磷剂加入量一定的情况下, 当助熔剂量多时, 氧化剂和固定剂的相对加入量就会减少, 因此, 脱磷效果反而不好;且预熔脱磷剂中CaF2 大于15% 时将对炉衬产生明显的侵蚀。
图3 预熔脱磷剂中CaF2 含量对脱磷效果的影响 4.3铁水初始磷含量对预熔脱磷剂脱磷效果的影响
为适应铁水中初始磷含量的波动对脱磷反应效果的影响, 对初始磷含量不同的铁水用相同配比关系的预熔脱磷剂进行了实验研究。在1 300℃, 加入量为10%的条件下, 分别选用初始磷的质量分数为0.21%、0.168%、0.119% 的生铁进行实验, 结果如图4 所示。可以看出随初始磷含量的增大脱磷率略有增大, 当铁水中的初始磷的质量分数为0.21%时, 经过10 min 的脱磷处理后可使磷的质量分数降低到0.007 9%, 脱磷率为96.24%;当初始磷的质量分数为0.168% 时, 可将铁水中的磷的质量分数降低到0.015% 的较低水平;初始磷的质量分数进一步降低为0.119% 时, 铁水中的磷的质量分数也能降低到0.012% 的水平, 脱磷率可达到89.92%。结果表明铁水中初始磷含量对用预熔脱磷剂进行铁水预处理脱磷的脱磷效果影响不大。
图4 初始铁水中磷含量对脱磷率的影响
4.4 处理温度对预熔脱磷剂脱磷效果的影响
由热力学分析可知, 脱磷反应是强放热反应(ΔH =O 反应大量进行, 保证脱磷在低温下进行。快速提高渣中FeO 含量, 保证炉渣熔化速度和具有较好的氧化性。此时, 控制温度在1 400 ℃以下, 控制ΣFeO 质量百分数在35% ~40% , 使炉渣具有较高的氧化性, 炉渣碱度在210左右, 这样在保证炉渣有良好的氧化性前提下有很好的流动性, 同时加强炉内搅拌, 促进渣-金反应的快速进行。脱碳升温期的主要任务是脱碳升温防止回磷。此时, 脱磷任务已基本完成, 随着脱碳的进行带来的高温会使脱磷反应逆向进行, 使渣中的磷又回到钢中。因此改善炉渣热力学条件来进一步强化脱磷,的目的。控制终点ΣFeO质量百分数在15%左右炉渣碱度在315 ~410。各厂的生产条件的差异应做适当的调整, 以满足生产的稳定。但需要指出的是, 化渣脱磷期可采用高枪位软吹或降低供氧强度, 即可以控制炉内温度, 在促进化渣的同时也可适当延长化渣脱磷期, 使脱磷反应充分进行。脱碳升温期, 尽量提高供氧强度, 快速脱碳升温来降低回磷。在条件准许的情况下, 可以采用留钢操作是获得高质量钢的有效手段。
6.2复吹转炉成渣对脱磷结论
1)成渣过程决定脱磷的效率, 冶炼的不同时期应合理控制炉渣碱度、氧化性和温度, 铁水磷含量的不同应选择不同的成渣方式。
2)化渣脱磷期铁水中磷含磷较高脱磷的驱动力较大, 主要通过改善动力学条件来加快脱磷, 采用铁质成渣。控制温度在1 400 ℃以下, 控制ΣFeO质量百分数在35% ~40% , 使炉渣具有较高的氧化性, 炉渣碱度在210左右, 这样在保证炉渣有良好的氧化性前提下有很好的流动性, 促进渣-金反应的快速进行。
3)脱碳升温期铁水温度较高是脱磷的不利条件, 因此改善热力学条件来进一步强化脱磷。控制终点ΣFeO 质量百分数在15% ~20% , 炉渣碱度在315~410。【5】 7 结语
我国作为钢材生产和消费大国, 炼钢工序作为钢铁生产不可缺少的环节, 钢渣的产生不可避免。近年来, 我国钢渣和铁渣的堆置达3亿多吨, 钢渣占钢铁工业固体废物的12109%。在冶金工业生产中, 排放的主要固体废弃物是高炉渣和转炉渣。其中高炉渣是利用技术最成熟的工业废渣, 而转炉渣的回收利用相对差很多, 对钢渣利用比较好的国家主要有美国、德国和日本, 利用率均达到95%以上。而我国在2002年调查中钢渣利用率仅为36% , 与国外先进国家相比, 在钢铁渣综合利用方面还有较大差距。因而我们要多开发新技术如脱磷,做到如何在低成本下实现最大化的脱磷同时又不影响环境,从而做出高产出。新的技术还有待开发。
第五篇:钢铁冶金论文
专科论 文
题 目: 科 生 姓 名: 学 科、专 业: :
业论文
钢铁中对脱磷反应的
蔡月亮
冶金工程(高起专函授)
内蒙古科技大学成人教育学院
毕专学院(系、所)
内蒙古科技大学成人教育学院
毕业设计(论文)任务书
专业 冶金工程(高起专函授)班级09级冶金班
学号 姓名蔡月亮
毕业设计(论文)题目:钢铁中对脱磷反应的研究
设计期限:自2009年 9 月 1 日 至2011年 5 月 20 日
指导老师:庞峰淼
系 主 任:
2011年 4 月 27日
摘要
主要研究近年来脱磷的方法,一些防止冷脆和回磷的措施,复吹转炉成渣过程对脱磷的影响,高磷铁水脱磷效率影响因素等。
关键词:脱磷;炉渣碱度;速率;预熔脱磷剂;高磷铁水
Abstract Research in recent years dephosphorization method, some of the phosphorus to prevent cold crisp and return measures, blowing converter process for dephosphorization slag into the impact of high phosphorus hot metal dephosphorization efficiency influencing factors.Keywords: dephosphorization;slag basicity;rate;pre-melting dephosphorization agent;high phosphorus hot metal
前言
脱除钢液中有害杂质磷的物理化学过程。在高炉炼铁时,原料中的磷几乎全部还原到生铁中,随着铁矿石磷含量的不同,生铁中的磷可达0.1%~1.0%,特殊的可高达2.0%以上。铁合金中同理也含有相当多磷。磷使钢材在低温下变脆,即产生“冷脆”现象。实验研究证明,磷在钢凝固过程中偏析聚集在晶界处,很少量的磷,例如0.01%(100ppm)即可使钢呈现低温脆性。冶炼普通钢要求将磷降到0.030%~0.040%,而低温用钢如寒冷地带钻井平台用钢、液化气体储存和输送用钢等要求含磷低到0.002%~0.003%(即20~30ppm)。因此,脱磷是炼钢过程的主要任务之一。
2.转炉的脱磷
2.1转炉脱磷的基本原理
通常认为,磷在钢中是以[Fe3P]或[Fe2P]的形式存在,为方便起见,均用[P]表示。炼钢过程中的脱磷反应是在金属液与熔渣界面进行,首先是[P]被氧化成(P2O5),然后与(CaO)结合成稳定的磷酸钙,其反应式可表示为:
2[P]+5(FeO)+4(CaO)==(4CaO·P2O5)+5[Fe] 或 2[P]+5(FeO)+3(CaO)=(3CaO2·P2O5)+5[Fe] 2.2影响脱磷的因素
磷的氧化在钢渣界面进行,按炉渣分子理论的观点,反应式如下: 2[P]+5(FeO)=(P2O5)+5[Fe]---Q1(1)
3(FeO)+(P2O5)=(3 FeO·P2O5)---Q(2)
(3 FeO·P2O5)+4(CaO)=(4CaO·P2O5)+ 3(FeO)---Q(3)有式(1),(2),(3)可推导出(4): 2[P]+5(FeO)+4(CaO)=(4CaO·P2O5)+5[Fe]---(4)式(4)表明,高碱度、高氧化性渣对脱磷有利,去磷是放热反应,故从热力学讲低温条件有利于去磷反应的进行。
(1)氧化性对炉渣去磷能力影响的理论分析
由上式不难看出(FeO)在脱磷过程中起双重作用,一方面作为磷的氧化剂起氧化磷的作用;另一方面充当把(P2O5)结合成(3 FeO·P2O5)的基础化合物的作用。可以认为渣中存在(FeO)是去磷的必要条件。由于(3 FeO·P2O5)在高于1470℃时不稳定的,因此只有当熔池内石灰熔化后生成稳定的化合物(4CaO·P2O5)才能达到去磷的目的。(2)炉渣碱度对炉渣去磷能力的影响理论分析
CaO具有较强的脱磷能力,(4CaO·P2O5)在炼钢温度下很稳定,因此,提高炉渣碱
度可以提高脱磷的效率。但不能无止尽的提高炉渣的碱度,如果CaO加入过多,炉渣的熔点增大,CaO颗粒不能完全熔入炉渣,则导致炉渣的流动性减弱,黏度增强,从而影响脱磷反应在钢液与炉渣之间的界面进行而降低脱磷效果。另外,炉渣碱度与氧化铁的活度也有关系,过高碱度减少氧化铁的活度,从而降低脱磷效果。
(3)温度对炉渣去磷能力影响的理论分析
温度对去磷反应的影响从两个方面来看:一方面,去磷反应是放热反应,高温不利于去磷,然而,熔池温度的提高,将加速石灰的熔化,提高熔渣碱度,从而提高磷在炉渣和钢水中的分配比;另一方面,高温能提高渣的流动性,能加强渣—钢界面反应,提高去磷速度,所以过低的温度不利于去磷。
总之脱磷的条件为:高碱度、高(FeO)含量(氧化性)、良好的流动性熔渣、充分的熔池搅动、适当的温度及大渣量。
2.3冷脆现象
磷是钢中有害杂质之一。含磷较多的钢,在室温或更低的温度下使用时,容易脆裂,称为“冷脆”。钢中含碳越高,磷引起的脆性越严重。一般普通钢中规定含磷量不超过 0.045%,优质钢要求含磷更少。生铁中的磷,主要来自铁矿石中的磷酸盐。氧化磷和氧化铁的热力学稳定性相近。在高炉的还原条件下,炉料中的磷几乎全部被还原并溶入铁水。如选矿不能除去磷的化合物,脱磷就只能在(高)炉外或碱性炼钢炉中进行。
2.4回磷现象
所谓的回磷现象,就是磷从熔渣中又返回到钢液中。成品钢中磷含量高于终点钢中的磷含量也属于回磷现象。熔渣的碱度或氧化亚铁含量降低,或石灰划渣不好,或温度过高等,均会引起回磷现象。出钢过程中,由于脱氧合金加入不当,或出钢下渣,或合金中磷含量较高等因素,也有导致成品钢中磷高于终点钢[P]含量。由于脱氧,炉渣碱度、(FeO)含量降低,钢包内有回磷现象,反应式如下:
2(FeO)+[Si]==(SiO2)+2[Fe]
(FeO)+[Mn]==(MnO)+[Fe]
2(P2O5)+5[Si]==5(SiO2)+4[P]
(P2O5)+5[Mn]==5(MnO)+2[P]
3(P2O5)+10[Al]==5(Al2O3)+6[P] 通常采用避免钢水回磷措施:挡渣出钢,尽量避免下渣;适当提高脱氧前碱度;出钢后向钢包渣面加一定量石灰,增加炉渣碱度;尽可能采取钢包脱氧,而不采取炉内脱氧;加入钢包改质剂。2.5 还原脱磷
还原条件下进行脱磷近年来也很受关注,要实现还原脱磷,必须加入比铝更强的脱氧剂,使钢液达到深度还原。通常加入Ca,Ba或CaC2等强还原剂。还原脱磷反应:
3[Ca]+2[P]===3(Ca2+)+2(P3-)3[Ba]+2[P]===3(Ba2+)+2(P3-)3CaC2(s)+2[P]===3(Ca2+)+2(P3-)+6[C] 还原脱磷加入强还原剂的同时,还需加入CaF2,CaO等熔剂造渣。还原脱磷一般是在金属不宜用氧化脱磷的情况下使用,如含铬高的不锈钢,采用氧化脱磷会引起铬的大量氧化。还原脱磷后的渣应立即去除,否则渣中P3-又会被重新氧化成PO43-而造成回磷。【1】
2.6脱磷反应的速率
脱磷是渣一钢界面反应,反应的进行包括3个环节:(1)钢液中磷和氧向渣钢界面传质;(2)在渣钢界面进行化学反应;(3)生成物在渣相内的传质。高温下脱磷的化学反应是极快的,传质是脱磷速率的限制环节。对于渣相和金属相中的传质快慢比较,不同研究者所得结果各异。这可能因两相中的传质速率差别不大,所以测定有分歧。然而无论是哪个相中,增大传质速率的因素都是加强搅拌,增大界面流动速度,增大渣钢界面面积等。顶吹转炉中有大量金属液滴弥散于渣中,造成良好的脱磷动力学条件,许多人捕集液滴进行化学分析,发现液滴中磷含量比同一时刻的熔池含磷量低得多。可以认为,顶吹转炉的脱磷都是在液滴表面进行的。氧气底吹转炉,如果随同氧气喷入石灰粉,则石灰粉粒与生成的氧化铁可以形成低熔点的铁酸钙渣滴,造成良好的脱磷热力学条件和动力学条件,使脱磷能提前到脱碳时进行,大约有50%~70%的磷靠渣滴来脱除。所以说,加强冶炼过程的搅拌造成液滴乳化,是提高脱磷速率的根本性措施。预熔脱磷剂进行铁水脱磷的实验
3.1 w(CaO)/w(Fe2O3)对预熔脱磷剂脱磷效果的影响
根据脱磷的主要反应式(式(1))可知, 脱磷剂中Fe2O3 在铁水中的溶解氧[ O] 能将铁水中的[ P] 氧化为P2O5 , 但P2O5 不稳定, 必须和碱性氧化物(CaO)反应生成稳定的磷酸盐渣(4CaO·P2 O5 或3CaO·P2 O5), 才能使铁水中的磷脱除掉。通过实验欲找到一个能使铁水中磷含量降到最低的w(CaO)/w(Fe2O3)比值, 以达到最佳的脱磷效果。2[ P]+5(FeO)+4(CaO)=4(CaO)+(P2O5)+ 5[ Fe](1)为此, 在1350℃下固定w(CaF2)为10%不变,改变预熔脱磷剂中w(CaO)和w(Fe2 O3)的比值进行脱磷实验, 脱磷剂加入量为铁水量的10%, 处理时间为10 min, 结果如图2 所示。可看出, 在w(CaO)/w(Fe2O3)的值介于0.5~ 1.0 之间时, 随比值增大脱磷率逐渐上升, 当w(CaO)与w(Fe2O3)的比值为1.0 左右时, 脱磷率最大, 为95.22%, 这主要是由于w(CaO)/w(Fe2O3)约为1 时, 使铁水中[ P] 与[ O] 充分结合生成的P2O5 能被CaO 完全固定为4CaO·P2O5 或3CaO·P2 O5 , 实现较好的脱磷效果;而在w(CaO)/ w(Fe2 O3)介于1.00~1.25 之间时, 随比值增大脱磷率逐渐下降。
图
2w(CaO)/ w(Fe2O3)对脱磷率的影响
3.2 助熔剂含量对预熔脱磷剂脱磷效果的影响
固定w(CaO)/w(Fe2O3)=1.0不变, 改变助熔剂CaF2 的含量在6% ~ 15% 之间变化进行脱磷实验。处理10 min 的结果如图3 所示, 可以看到在CaF2 含量为6% 时, 脱磷率相对较低, 进一步增加CaF2 的含量, 当w(CaF2)为10% 时, 脱磷率最大,为96.24% , 使铁水中的磷由0.21% 降低为0.0079%, 这主要因为CaF2 与CaO 能形成低熔点化合物, 经预熔处理后脱磷剂熔点和粘度得到了降低 ,使脱磷反应的动力学条件得到了明显改善;当w(CaF2)进一步增加为15%时, 脱磷率有一定程度的降低, 为91.43%。由于在脱磷剂加入量一定的情况下, 当助熔剂量多时, 氧化剂和固定剂的相对加入量就会减少, 因此, 脱磷效果反而不好;且预熔脱磷剂中CaF2 大于15% 时将对炉衬产生明显的侵蚀。
图3 预熔脱磷剂中CaF2 含量对脱磷效果的影响
3.3 铁水初始磷含量对预熔脱磷剂脱磷效果的影响
为适应铁水中初始磷含量的波动对脱磷反应效果的影响, 对初始磷含量不同的铁水用相同配比关系的预熔脱磷剂进行了实验研究。在1 300℃, 加入量为10%的条件下, 分别选用初始磷的质量分数为0.21%、0.168%、0.119% 的生铁进行实验, 结果如图4 所示。可以看出随初始磷含量的增大脱磷率略有增大, 当铁水中的初始磷的质量分数为0.21%时, 经过10 min 的脱磷处理后可使磷的质量分数降低到0.007 9%, 脱磷率为96.24%;当初始磷的质量分数为0.168% 时, 可将铁水中的磷的质量分数降低到0.015% 的较低水平;初始磷的质量分数进一步降低为0.119% 时, 铁水中的磷的质量分数也能降低到0.012% 的水平, 脱磷率可达到89.92%。结果表明铁水中初始磷含量对用预熔脱磷剂进行铁水预处理脱磷的脱磷效果影响不大。
图4 初始铁水中磷含量对脱磷率的影响
3.4 处理温度对预熔脱磷剂脱磷效果的影响
由热力学分析可知, 脱磷反应是强放热反应(ΔH =O 反应大量进行, 保证脱磷在低温下进行。快速提高渣中FeO 含量, 保证炉渣熔化速度和具有较好的氧化性。此时, 控制温度在1 400 ℃以下, 控制ΣFeO 质量百分数在35% ~40% , 使炉渣具有较高的氧化性, 炉渣碱度在210左右, 这样在保证炉渣有良好的氧化性前提下有很好的流动性, 同时加强炉内搅拌, 促进渣-金反应的快速进行。脱碳升温期的主要任务是脱碳升温防止回磷。此时, 脱磷任务已基本完成, 随着脱碳的进行带来的高温会使脱磷反应逆向进行, 使渣中的磷又回到钢中。因此改善炉渣热力学条件来进一步强化脱磷,的目的。控制终点ΣFeO质量百分数在15%左右炉渣碱度在315 ~410。各厂的生产条件的差异应做适当的调整, 以满足生产的稳定。但需要指出的是, 化渣脱磷期可采用高枪位软吹或降低供氧强度, 即可以控制炉内温度, 在促进化渣的同时也可适当延长化渣脱磷期, 使脱磷反应充分进行。脱碳升温期, 尽量提高供氧强度, 快速脱碳升温来降低回磷。在条件准许的情况下, 可以采用留钢操作是获得高质量钢的有效手段。
5.2复吹转炉成渣对脱磷结论
1)成渣过程决定脱磷的效率, 冶炼的不同时期应合理控制炉渣碱度、氧化性和温度, 铁水磷含量的不同应选择不同的成渣方式。
2)化渣脱磷期铁水中磷含磷较高脱磷的驱动力较大, 主要通过改善动力学条件来加快脱磷, 采用铁质成渣。控制温度在1 400 ℃以下, 控制ΣFeO质量百分数在35% ~40% , 使炉渣具有较高的氧化性, 炉渣碱度在210左右, 这样在保证炉渣有良好的氧化性前提下有很好的流动性, 促进渣-金反应的快速进行。
3)脱碳升温期铁水温度较高是脱磷的不利条件, 因此改善热力学条件来进一步强化脱磷。控制终点ΣFeO 质量百分数在15% ~20% , 炉渣碱度在315~410。【5】 结语
我国作为钢材生产和消费大国, 炼钢工序作为钢铁生产不可缺少的环节, 钢渣的产生不可避免。近年来, 我国钢渣和铁渣的堆置达3亿多吨, 钢渣占钢铁工业固体废物的12109%。在冶金工业生产中, 排放的主要固体废弃物是高炉渣和转炉渣。其中高炉渣是利用技术最成熟的工业废渣, 而转炉渣的回收利用相对差很多, 对钢渣利用比较好的国家主要有美国、德国和日本, 利用率均达到95%以上。而我国在2002年调查中钢渣利用率仅为36% , 与国外先进国家相比, 在钢铁渣综合利用方面还有较大差距。因而我们要多开发新技术如脱磷,做到如何在低成本下实现最大化的脱磷同时又不影响环境,从而做出高产出。新的技术还有待开发。
参考文献
【1】朱苗勇。《现代冶金学》(钢铁冶金卷)冶金工业出版社.2008 【2】吕 岩, 张 猛, 陈 津, 艾立群, 周朝刚。《钢渣在微波场中还原脱磷的工艺》。《河北理工大学学报》(自然科学版)2010年8月,第32卷 第3期
【3】魏颖娟,袁守谦,张西锋,王伟,梁德安,张启业。《预熔脱磷剂进行铁水脱磷的实验研究》。《钢铁》2008年10月第43卷第10 期
【4】金焱,毕学工《高磷铁水脱磷效率影响因素的研究》。《武汉科技大学学报》2010年2月第33卷第1 期 【5】王学斌 , 张珊珊, 张炯。《复吹转炉成渣过程对脱磷的影响》。《莱钢科技》2010年6月