第一篇:2014中国海洋大学数学院考研大纲
011 数学科学学院
初试考试大纲:
617 数学分析
一、考试性质
数学分析是数学相关专业硕士入学初试考试的专业基础课程。
二、考试目标
本考试大纲制定的依据是根据教育部颁发的《数学分析》教学大纲的基本要求,力求反映与数学相关的硕士专业学位的特点,客观、准确、真实地测评考生对数学分析的掌握和运用情况,为国家培养具有良好数学基础素质和应用能力、具有较强分析问题与解决问题能力的高层次、复合型的数学专业人才。
本考试旨在测试考生对一元函数微积分学、多元函数微积分学、级数理论等知识掌握的程度和运用能力。要求考生系统地理解数学分析的基本概念和基本理论;掌握数学分析的基本论证方法和常用结论;具备较熟练的演算技能和较强的逻辑推理能力及初步的应用能力。
三、考试形式和试卷结构
(一)试卷满分及考试时间
本试卷满分为150分,考试时间为180分钟。
(二)答题方式
答题方式为闭卷、笔试。试卷由试题和答题纸组成,所有题目的答案必须写在答题纸相应的位置上。考生不得携带具有存储功能的计算器。
(三)试卷结构
一元函数微积分学、多元函数微积分学、级数理论及其他(隐函数理论、场论等)考核的比例均约为1/3,分值均约为50分。
四、考试内容(一)变量与函数
1、实数:实数的概念、性质,区间,邻域;
2、函数:变量,函数的定义,函数的表示法,几何特征(有界函数、单调函数、奇偶函数、周期函数),运算(四则运算、复合函数、反函数),基本初等函数,初等函数。
(二)极限与连续
1、数列极限:定义(-N语言),性质(唯一性,有界性,保号性,不等式性、迫敛性),数列极限的运算,数列极限存在的条件(单调有界准则(重要lim(1n)e1n的数列极限n),迫敛性法则,柯西收敛准则);
2、无穷小量与无穷大量:定义,性质,运算,阶的比较;
3、函数极限:概念(在一点的极限,单侧极限,在无限远处的极限,函数值趋于无穷大的情形(-, -X语言));性质(唯一性,局部有界性,局部保号性,不等式性,迫敛性);函数极限存在的条件(迫敛性法则,归结原则(Heine定理),柯西收敛准则);运算;
sinx11lim(1)xex4、两个常用不等式和两个重要函数极限(x0x,x);
lim5、连续函数:概念(在一点连续,单侧连续,在区间连续),不连续点及其分类;连续函数的性质与运算(局部性质及运算,闭区间上连续函数的性质(有界性、最值性、零点存在性,介值性、一致连续性),复合函数的连续性,反函数的连续性);初等函数的连续性。
(三)实数的基本定理及闭区间上连续函数性质的证明
1、概念:子列,上、下确界,区间套,区间覆盖;
2、关于实数的基本定理:六个等价定理(确界存在定理、单调有界定理、区间套定理、致密性定理、柯西收敛原理、有限覆盖定理);
3、闭区间上连续函数性质的证明:有界性定理的证明,最值性定理的证明,零点存在定理的证明,反函数连续性定理的证明;一致连续性定理的证明。
(四)导数与微分
1、导数:来源背景,定义(在一点导数的定义、单侧导数、导函数),导数的几何意义,简单函数的导数(常数、正弦函数、对数函数、幂函数),求导法则(四则运算,反函数的求导法则,复合函数的求导法则,隐函数的求导法则,参数方程所表示函数的求导法则);
2、微分:定义,运算法则,简单应用;
3、高阶导数与高阶微分:定义,运算法则。
(五)微分学基本定理及导数的应用
1、中值定理:费马(Fermat)定理,中值定理(罗尔(Rolle)中值定理、拉格朗日(Lagrange)中值定理、柯西(Cauchy)中值定理);
2、泰勒公式及应用(近似计算,误差估计);
3、导数的应用:函数的单调性、极值和最值,函数凸性与拐点,平面曲线的曲率,七种待定型与洛必达(L’Hospital)法则;
(六)不定积分
1、不定积分:概念,基本公式,运算法则,计算(换元积分法、分部积分法、有理函数积分法,其他类型积分)。
(七)定积分
1、定积分:来源背景,概念,函数可积的必要条件,达布上、下和,定积分存在的充要条件,可积函数类(闭区间上的连续函数,分段连续函数,单调有界函数),定积分的性质,定积分的计算(基本公式、换元公式、分部积分公式);
2、变上限定积分:定义,性质。
(八)定积分的应用
1、定积分在几何上的应用:平面图形的面积,曲线的弧长,截面已知的立体体积,旋转体的体积,旋转曲面的面积;
2、定积分在物理上的应用:功、压力、引力;
3、微元法。
(九)数项级数
1、预备知识:上、下极限;
2、级数的敛散性:无穷级数收敛、发散等概念,柯西收敛原理,收敛级数的基本性质;
3、正项级数:定义,敛散判别(基本定理,比较判别法,柯西判别法,达朗贝尔判别法,柯西积分判别法);
4、任意项级数:绝对收敛级数与条件收敛级数的概念和性质,交错级数与莱布尼兹判别法,阿贝尔(Abel)判别法与狄利克雷(Dirichlet)判别法。
(十)反常积分
1、反常积分:无穷限的反常积分的概念、性质,敛散判别法(柯西收敛原理,比较判别法,狄利克雷判别法、阿贝尔判别法);无界函数的反常积分的概念、性质,敛散判别法。
(十一)函数项级数、幂级数
1、函数项级数的一致收敛性:函数项级数以及函数列的概念,函数项级数以及函数列一致收敛的概念,一致收敛判别法(柯西收敛原理,优级数判别法,狄利克雷判别法与阿贝尔判别法);一致收敛的函数列与函数项级数的性质(连续性,可积性,可微性);
2、幂级数:阿贝尔第一、第二定理,收敛半径与收敛区间,幂级数的一致收敛性,幂级数和函数的分析性质(连续性,可积性,可微性),泰勒(Taylor)级数与几种常见的初等函数的幂级数展开。
(十二)傅里叶级数
1、傅里叶级数:引进,三角函数系的正性, 傅里叶系数与傅里叶级数,以2为周期的函数的傅里叶级数展开,以2L(L0)为周期的函数的傅里叶级数展开,奇偶函数的傅里叶级数展开,傅里叶级数收敛定理的证明。
(十三)多元函数的极限与连续
1、平面点集:邻域,点列的极限,开集,闭集,区域,平面点集的几个基本定理;
2、二元函数:概念,二重极限和二次极限,连续性(连续的概念、连续函数的局部性质及有界闭区域上连续函数的整体性质)。
(十四)偏导数和全微分
1、偏导数和全微分:偏导数的概念,几何意义;全微分的概念;二元函数的连续性、可微性,偏导存在的关系;复合函数微分法(链式法则);由方程组所确定的函数(隐函数)的求导法;
2、偏导数的应用:空间曲线的切线与法平面,曲面的切平面与法线;方向导数与梯度;泰勒公式。
(十五)极值和条件极值
1、极值:概念,判别(必要条件、充分条件),应用,最小二乘法;
2、条件极值:概念,拉格朗日乘数法,应用。
(十六)隐函数存在定理
1、隐函数:概念,存在定理;
2、隐函数组:隐函数组存在定理,反函数组与坐标变换,雅可比行列式。
(十七)含参变量积分与含参变量广义积分
1、含参变量的正常积分:定义,性质(连续性、可微性、可积性);
2、含参变量的反常积分:定义,一致收敛的定义,一致收敛积分的判别法(柯西收敛原理、魏尔斯特拉斯判别法、阿贝尔判别法、狄立克雷判别法),一致收敛积分的性质(连续性、可微性、可积性);
3、欧拉积分:函数和函数的定义、性质。
(十八)重积分的计算及应用
1、二重积分:二重积分的概念,性质,计算(化二重积分为二次积分,换元法(极坐标变换,一般变换);
2、三重积分:计算(化三重积分为三次积分, 换元法(一般变换,柱面坐标变换,球面坐标变换));
3、重积分的应用:立体体积,曲面的面积,物体的质心,矩,引力,转动惯量;
(十九)曲线积分与曲面积分
1、曲线积分:第一型曲线积分及第二型曲线积分的来源背景、概念、性质、应用与计算,两类曲线积分的联系;
2、曲面积分:第一型曲面积分及第二型曲面积分的来源背景、概念、性质、应用与计算,两类曲面积分的联系。
(二十)各种积分间的联系和场论初步
1、各种积分间的联系公式:格林(Green)公式,高斯(Gauss)公式,斯托克斯(Stokes)公式;
2、曲线积分与路径无关性:四个等价条件。
3、场论初步:场的概念,梯度,散度和旋度,保守场,哈密顿算子(算子)。
856 高等代数
一、考试性质
高等代数是全国数学专业硕士入学初试考试的专业基础课程。
二、考试目标
本考试大纲的制定力求反映数学硕士专业学位的特点,科学、准确、规范地测评考生高等代数的基本素质和综合能力,具体考察考生对高等代数基础理论的掌握与运用高等代数的基本概念和论证方法分析问题解决问题的能力。
本考试旨在三个层次上测试考生对高等代数理论知识掌握的程度和运用能力。三个层次的基本要求分别为:
1、概念理解: 对高等代数理论的基本概念的正确理解考核。
2、分析判断: 用高等代数基本理论来分析判断某些论述的正确与否。
3、综合运用: 运用所学的高等代数理论知识来解决综合性题目。
三、考试形式和试卷结构
(一)试卷满分及考试时间
本试卷满分为150分,考试时间为180分钟。
(二)答题方式 答题方式为闭卷、笔试。试卷由试题和答题纸组成,所有题目的答案必须写在答题纸相应的位置上。考生不得携带具有存储功能的计算器。
(三)试卷结构
基本概念理解与计算考核的比例约为16.7%,分值为25分; 分析判断考核的比例约为23.3%,分值为35分; 综合运用考核的比例约为60%,分值为90分。
四、考试内容
(一)多项式理论
1、一元多项式的一般理论 概念、运算、导数及基本性质;
2、整除理论
整除的概念、最大公因式、互素的概念与性质;
3、因式分解理论
不可约多项式、因式分解、重因式、实系数与复系数多项式的因式分解、有理系数多项式不可约的判定等;
4、根的理论
多项式函数、多项式的根、有理系数多项式的有理根的求法、根与系数的关系等;
5、多元多项式的一般理论 多元多项式概念、对称多项式。
(二)矩阵理论
1、行列式理论与计算
行列式的概念、性质以及计算;Cramer法则。
2、线性方程组
向量、向量组的线性关系;线性方程组的解的结构。
3、矩阵
矩阵的各种运算及运算规律,逆矩阵的求法,分块矩阵的相应运算及性质。4.二次型 二次型基本概念,配方法、合同法化二次型为标准形,正定二次型与正定矩阵的判定与证明。
(三)线性空间论
1、线性空间
线性空间的定义与性质;线性相关性及有关结论;秩与极大线性无关组;线性空间的基与维数;基变换与坐标变换公式;线性子空间;子空间的和与直和;线性空间的同构。
2、线性变换
线性变换及其基本性质;线性变换的运算;线性变换的矩阵;相似矩阵;矩阵的特征值与特征向量;线性变换的特征值与特征向量;哈密顿凯莱定理;相似对角化;线性变换的值域与核;不变子空间;不变子空间与线性变换的矩阵的化简;若尔当标准形;最小多项式。
3、矩阵
矩阵的概念; 矩阵的等价; 矩阵在初等变换下的标准形、不变因子与行列式因式; 矩阵的初等因子;求 矩阵的标准形的方法;矩阵相似的充分必要条件;若尔当标准形;有理标准形。
4、欧几里得空间
内积和欧几里得空间;长度、夹角与正交;度量矩阵;标准正交基;正交矩阵;欧氏空间的同构;正交变换;正交子空间与正交补;实对称矩阵的标准形;对称变换;向量到子空间的距离;最小二乘法。
复试考试大纲:
计算方法
一、考试性质
《计算方法》是中国海洋大学计算数学专业硕士研究生入学考试复试笔试科目。
二、考试目标
计算方法是数学类专业的重要专业基础课,介绍数值计算的基本方法及基本理论,使学生掌握把数学问题近似求解的“数值”计算方法,通过上机实习加深对基本方法的理解并提高实际运用和编程实现能力,为进行计算方法理论及应用的深入研究打下基础。
本科目旨在考查考生对计算数学基础理论知识的掌握及考生的基本数值分析能力。主要从如下三方面测评考生的计算数学基本素质:
1、基本概念和基本理论的掌握
2、基本数值方法的构建及分析
3、综合算法分析及应用
三、考试形式和试卷结构(一)试卷满分及考试时间
本试卷满分为100分,考试时间为120分钟
(二)答题方式
答题方式为闭卷、笔试。试卷由试题和答题纸组成,答案必须写在答题纸上。考生不得携带计算器。
(三)试卷结构
数值逼近的基本概念和基本理论比例约为30%,分值约为30分; 代数方程的数值方法及分析比例约为40%,分值约为40分; 微分方程数值解法及分析比例约为30%,分值约为30分。
四、考试内容
(一)数值逼近基础
1.误差(误差来源,误差限,有效数字,误差传播,避免误差的注意事项)2.插值法(Lagrange插值,Hermite插值,分段插值,分段Hermite插值, 样条插值,数值微分)
3.数据拟合法(最小二乘原理,多变量拟合,正交多项式拟合)4.数值积分(梯形、Simpson公式及误差估计,复化公式及误差估计,加速公式与Romberg求积,Gauss型公式等)
(二)代数方程数值方法
1.线性代数方程组的直接法(高斯消去法、主元消去法, 矩阵分解法,误差分析)
2.线性代数方程组的迭代法(几种常用迭代法收敛性及误差估计,判别收敛的条件,收敛速率)
3.矩阵特征值和特征向量的计算(幂法,反幂法,QR算法 Jacobi方法)4.非线性代数方程的解法(对分区间法,迭代法,迭代收敛的加速,Newton法,弦位法抛物线法,最速下降法)
(三)微分方程数值方法
1.常微分方程的数值解法(几种简单的数值解法,R-K方法,线性多步法,预估校正公式,自动选取步长及事后估计)
2.偏微分方程的差分解法(差分格式的建立,收敛性,稳定性,高维问题的交替方向法)
实变函数
一、考试性质
《实变函数》是中国海洋大学计算数学专业硕士研究生入学考试复试笔试科目。
二、考试目标
实变函数是近代分析数学的基础,是数学分析的延续与拓广。考试以考察基本知识为主,考核对重要定理的理解和应用。
三、考试形式和试卷结构(一)试卷满分及考试时间
本试卷满分为100分,考试时间为120分钟
(二)答题方式 答题方式为闭卷、笔试。试卷由试题和答题纸组成,答案必须写在答题纸上。考生不得携带计算器。
(三)试卷结构
填空题与简答题占35%,证明题占65%。
四、考试内容
(一)集合论
1集合的各种运算,上、下限集的定义 2集合的对等,集合的基数,集合的可列性;
3开集、闭集、完全集、稠密集、稀疏集的概念及其性质;点集的内部、导集、闭包、边界;Cantor三分集的结构和性质;
4点到集合的距离,集合间的距离。
(二)可测集
1.外测度、测度和可测集的概念及其性质,集合可测性的判别方法; 2.开集、闭集的可测性,以及它们与可测集之间的联系。
(三)可测函数
1.可测函数的概念及其性质;
2.函数可测性的判别方法,其与简单函数的联系;
3.可测函数列几种收敛性之间的关系(包括处处收敛、几乎处处收敛、一致收敛、近一致收敛、测度收敛);
4.可测函数和连续函数的联系
5.叶果洛夫定理、里斯定理、鲁津定理的含义及应用;
(四)Lebesgue积分
1.Lebesgue积分的定义及其性质,函数可积性的判定;
2.积分收敛定理(勒维定理,法杜定理和Lebesgue控制收敛定理,Vitali定理)及应用;
3.Riemann积分与Lebesgue积分之间的区别和联系; Fubini定理。
数学物理方程
一、考试性质
《数学物理方程》是中国海洋大学计算数学专业硕士研究生入学考试复试笔试科目。
二、考试目标
《数学物理方程》课程是近代分析学的重要分支,是物理学及其它自然科学中出现的偏微分方程为主要研究对象,是先修课程数学分析、高等代数、空间解析几何、普通物理、复变函数、常微分方程、泛函分析等课程的延续与拓广。考试以考察基本知识和计算能力为主,考核对重要定理的理解和应用。
三、考试形式和试卷结构(一)试卷满分及考试时间
本试卷满分为100分,考试时间为120分钟
(二)答题方式
答题方式为闭卷、笔试。试卷由试题和答题纸组成,答案必须写在答题纸上。考生不得携带计算器。
(三)试卷结构
填空题与简答题占40%,证明题占60%。
四、考试内容
(一)绪论
数学物理方程含义。
(二)波动方程
(1)方程的建模过程;(2)达朗贝尔公式的推导过程的理解;(3)各种情形中特征问题的特征值与特征向量;(4)球平均法与降维法的基本原理的理解;(5)二维与三维情形的差异和联系;(6)能量法的应用
(三)热传导方程
(1)方程的建模过程;(2)具第三类边界条件的特征问题;(3)积分变换法;(4)极值原理及其应用;(5)解的衰减估计值分析。
(四)调和方程
(1)方程的建模过程;(2)格林函数及性质;(3)弱极值原理与强极值原理应用;(4)特殊区域(二维及三维空间)中格林函数及推导(5)调和函数性质。
(五)二阶线性偏微分方程的分类与总结
(1)方程分类与标准形式的转化;
概率论与数理统计
一、考试性质
《概率论与数理统计》是中国海洋大学数学科学学院硕士研究生入学考试复试笔试科目。
二、考试目标
概率论与数理统计是数学类专业的重要专业必修课,要求学生掌握概率论与数理统计的基本理论和基本方法。对相关定理和统计方法有较为深刻的理解,具有分析问题和解决问题的基本技能,为深入学习随机过程和高级数理统计知识打下扎实基础。
本科目旨在考查考生对概率论与数理统计基础理论、基本知识的掌握情况。主要从如下三方面测评考生的概率论与数理统计方面的基本素质:
1、基本概念和基本理论的理解、掌握;
2、基本解题能力;
3、综合运用理论知识分析问题、解决问题的能力。
三、考试形式和试卷结构(一)试卷满分及考试时间
本试卷满分为100分,考试时间为120分钟
(二)答题方式 答题方式为闭卷、笔试。试卷由试题和答题纸组成,答案必须写在答题纸上。考生不得携带计算器。
(三)试卷结构
基础知识和基本概念理解部分约占分值30%;
运用所学知识经过基本分析解决问题部分约占分值40%;
运用基本理论和基本方法综合分析问题解决问题部分约分值30%。概率论部分与数理统计部分各占分值50%;
四、考试内容
(一)概率论部分
1、概率论的基本概念:样本空间,随机事件,概率,条件概率,独立性。
2、随机变量及其分布函数,密度函数
3、二元随机变量,分布函数,条件分布,边际分布,相互独立。
4、数学特征。重要不等式。
5、特征函数,大数定律,中心极限定理。
(二)数理统计部分
1、数理统计基本概念:总体,个体,样本,统计量,经验分布函数,抽样分布定理,分位数。
2、估计理论:矩法估计,极大似然估计,无偏性,有效性,相合性,一致最小方差无偏估计,充分性,完备性,区间估计,贝叶斯估计。
3、假设检验:正态总体参数的假设,指数分布,二项分布的假设检验,非参数假设检验。
4、方差分析:单因素方差分析,两因素方差分析。
5、回归分析:线性模型,最小二乘估计,最小二乘估计的性质,线性模型中回归系数的假设检验,预测与控制。
第二篇:2013中国海洋大学会计学考研经验总结
2013中国海洋大学会计学考研经验总结
一年多的考研生活算是结束了,很欣慰是自己想要的结果。因为去年我也曾为了找各种资料焦头烂额的,所以我写下这些文字,希望能帮到曾像我一样迷茫的考研人。考研最重要的就是坚持,努力,坚持努力。当然,每个人的学习方法是不一样的,适合自己的才会有效果。考研是自己的事情,不要指望别人帮你做计划,什么时候该干什么自己一定要有规划。最重要的不是你从几月开始,每天在自习室呆了多久,而是你每天学到了多少东西。
一、初试
我大约是四月定下来考海大的,四月到六月基本就只看了高数、现代、概率的课本,英语也只是背了背单词,用的是新东方的乱序版单词。因为这学期还有几门专业课,所以没有系统的开始复习。真正开始系统复习是暑假开始,每天七点起床,八点到教室,晚上十一点睡觉,期间除了吃饭基本都在看书。暑假两个月,数学就看二李的复习全书,看了两遍,不太熟悉的题目单独抄下了,定义公式等知识点也单独抄下来。英语看了张剑的历年真题解析及复习思路(珍藏版),阅读理解150篇的基础篇,每天一个unit,做完仔细核对答案。
九月开学以后数学买了660,一个月内看完。英语买了阅读理解150篇的提高篇,还是每天一个unit。九月底出了政治大纲以后开始看政治,红宝书我只看了一遍,个人觉得还是风中劲草编的比较适合背诵。专业课我开始的比较晚,等出了简章十月才开始买书看,海大的鱼山校区书店卖初试真题,但是没有答案。海大的会计学今年考861 经济管理学基础(含:经济学、管理学)。经济学我看的是高鸿业的西方经济学和配套的题,管理学看的是周三多的。专业课课本至少看三遍,对于真题中出现过的知识点更要多看几遍。海大的专业课压分挺严重的,基本就是100多分。今年变化了考试科目后,我个人认为出的题都挺中规中矩的,多看几遍书就可以了。
后来基本就是书店出什么书就买什么书,模拟题真题预测题什么的都买了,但是感觉时间挺紧的。其实书不一定要买多少,主要是看的精一些,看了能记在脑子里。我的书基本每一本都看过至少两遍。12月开始做各种模拟预测题,背政治的知识点。当时已经比较冷了,一定要注意保暖不要感冒,生病不仅影响心情还影响学习效率。
到了最后快考试的时候,大家都很焦躁,每天学习十几个小时感觉特别特别累。但是一定要坚持,只要你报了名,就一定要去考试,而且还要坚持考完最后一场。一定要把你会的题全部都答满,不会的也要答上一些,尽量不要空着。对于海大的会计专业来说竞争压力挺大的,报录比基本都在1:20左右。海大的复试比例占得挺大的,所以还是应该好好准备。不过还是尽量把初试分数考的高一点,这样复试压力就会小一点。复试成绩=专业科目笔试成绩×50%+面试成绩×40%+外国语听力与口语测试成绩。录取总成绩=(初试成绩÷5)×50%+复试成绩×50%。
二、复试笔试
笔试考的是会计专业综合(含财务会计、财务管理、审计学)。海大今年考研的简章变化挺大,初试复试考的科目都变了,不过总体难度降低了一些。今年没有给参考书目,但是给了一个大纲。个人认为复习难度减少了,因为有很多章节不需要看。关于复试基本买不到笔试题,而且每年都不一样的题,所以按照大纲好好看书就可以了。今年是2月6号出的初试成绩及排名,我是从知道成绩开
始复习的。
笔试印象中只有财务管理出现了财务分析那章的公式,其他的都没有超出大纲范围。我财务会计用的是人大版的财务会计学和高级会计学,另外还对照着大纲看了注会的教材。财务管理只看了人大版的财务管理学。审计看的是注会教材。一个半月时间把教材都过了2遍,配套题过了1遍。
三、复试面试
这次招生简章上除了保研的招13个人,1:1.3复试,进了17个。另外有1个调剂名额,调剂是1:3复试。不过不管你是第一名还是最后一名,只要能进复试都挺不容易的,要好好准备。此次面试财务管理和会计学是一批老师,财务管理因为人少,安排在上午。会计的安排在下午,从12点开始,按初试排名顺序面试,每人20分钟。老师会提前说面试顺序,一定要记清楚自己的号。面试好像是10个老师,多少都有点紧张。不过,大家都差不多是这状态,不要想太多。进去时记得敲门、鞠躬,其他的老师会告诉你干什么,按照规定来就可以了。手机会提前收起来,大家都在一个教室等着,面试完的人就离开了,你基本不可能与其他人交流面试的题目,所以好好准备自己的就好了,不要想其他的。
面试先中文自我介绍,一分钟左右,然后老师们会依次问问题,财务会计、管理会计、计算机会计、成本会计、审计、财务管理都有涉及。还有一题是会计的专业英语。我今年只看了复试指定的书,有很多别的科目的知识都忘记了,是按自己的理解回答的。开放性的题目老师更看重你的思路,所以尽量不要停顿太久,想到多少说多少。
其实复试没有那么恐怖的,我开始也是各种紧张,但是等真正进去了也就没想那么多了,就想着怎么答问题。最后的复试结果基本跟初试差不多,所以排名靠前的只要好好准备,基本就没有问题了。
P.S.关于住宿
海大的崂山校区是比较偏的,附近基本没有什么连锁酒店。我们是住的学校南门的一家小旅馆,我本科学校在青岛,所以初试报名的时候就去预定了。个人认为条件挺差的,冬天很闷还没有热水,不过就是离考场近,忍两天就过去了。如果想住学校附近的一定要找同学什么的提前预定!我当时睡的很不好,大概也是有点紧张吧,基本就睡四五个小时就醒了。本来还担心发挥不好,不过等去了考场基本就特别清醒了。
虽然坚持了一年多初试过不了还是挺难过的,但是考研没有成功与失败,这一年多的经历更多的是对我们毅力和心志的磨砺,会是我们的一笔财富。只要坚持下来,你就是胜利者。人生也不是只有考研一条路可走。不考研的可以找工作,也可以考公务员事业编等等。
不管怎样,生活还要继续。
最后,希望每个有梦想的人都能坚持到想要的结果。
第三篇:中国海洋大学法政学院法学专业
中国海洋大学法政学院法学专业
(法院)教学实习基地
法学是应用型学科,实践教学是法学教育的重要环节,与理论教学有着同等重要的地位。法政学院按照中国海洋大学本科实习指导书要求,全面落实毕业实习工作,与临沂市罗庄区司法局、聊城市中级人民法院、青岛市市南区人民法院等司法机关签署实习基地协议书和挂牌,共同建设培养高级应用型法律人才实习基地,实现毕业实习目的,也实现高校和司法部门的沟通与交流以及共同培养现代法律人的目标。
一、实习基地基本情况
法政学院以青岛市市南区人民法院为中心,在全市法院系统开展本科教学实习活动,另外还在聊城市中级人民法院和临沂市罗庄区司法局建立实习基地。目前已经在青岛市中级人民法院、青岛市市北区人民法院、青岛市崂山区人民法院、青岛市李沧区人民法院等单位开展实习活动。
(一)青岛市市南区人民法院
青岛市市南区人民法院地处青岛市政治、经济、文化和对外交流的中心,辖区面积30.11平方公里,人口40余万,全区辖14个街道办事处。市南区法院现有法官及其他工作人员158人,全院人员在院党组的正确领导下,勇于实践,大胆创新,与时俱进,顺利完成社会和法律赋予的各项审判任务。近年来,市南区人民法院先后被最高人 1
民法院荣记集体一等功;被山东省委政法委授予“全省政法系统创人民满意活动先进单位”;被青岛市委、市政府评为“政法系统争创全国一流工作先进单位”,同时还是全省法院系统先进法院和全省行政审判先进法院、全省少年审判工作先进集体。多年来,市南法院结合实际,并经过大量的理论调研,先后推出了“责任法官”、“简繁分流”、“审判流程管理”、“大民事格局”、“小额欠债法庭”“部分执行案件实行暂缓立案”、“实行债权凭证制度”、“悬赏公告”及在少年审判中实行“人格调查”制度等系列改革方案,有力地推进了市南法院的审判工作,大大丰富了基层法院的改革经验,也为上级法院的司法改革提供了重要参考。市南法院的改革先后被中央及省、市各大媒体报道,赢得良好的社会效果。
(二)聊城市中级人民法院
聊城市中级人民法院下辖9个基层法院,共有派出法庭28个,全市法院共有法官和其他工作人员1000余名,其中中级法院200余名。全市法院每年共受理刑事、民事、行政和执行案件5万余件,其中中级法院每年受理近1.5万件。聊城中院现有内设机构19个,主要业务部门有,2个刑庭,5个民庭,行政庭、审判监督庭、立案庭执行局各1个,受理聊城行政辖区内的刑事、民事、行政和执行案件。近年来,聊城法院在市委领导、人大监督,市政府、政协和社会各界的支持及上级法院的指导下,坚持为党和国家的工作大局服务的政治方向,坚持以人民满意为最高标准,以争创一流为奋斗目标,围绕“公正与效率”主题,不断强化广大干警的责任意识、大局意识,树立司
法品牌观念,严格依法办事,讲求工作艺术,追求最佳效果,大力加强队伍建设,不断深化法院改革,强化内外监督机制,规范法院内部管理,审判质量和效率不断提高,保障了我市经济的发展和社会的稳定,为我市对外开放和经济发展营造了良好的法治环境,得到了上级机关的肯定,受到了人民群众的赞誉。
(三)临沂市罗庄区司法局
临沂市罗庄区司法局有办公室、基层管理科、宣传教育科、“148”指挥中心、法律援助中心、司法所、公证处等机构组成,负责制定全区法制宣传教育和普及法律常识规划并组织实施,指导监督律师、法律顾问和法律援助工作,指导监督公证机构及公证业务活动,指导、管理人民调解工作和基层法律服务工作,参与社会治安综合治理工作,负责主管业务范围的行政应诉、复议、听证工作,还参与地方涉法规性文件的研究拟制工作,负责司法行政系统外事工作及对涉港澳台法律服务的联络工作。
二、实习目的和活动内容
法学本科专业实习是对学生法学理论和技能进行基本培训的实践环节。学生通过实习把法学专业基础知识和司法实践结合起来,巩固专业理论教学的效果,培养学生调查、研究、观察问题的能力。专业实习作为学生写作毕业论文和走向社会参加工作前的必要环节,既能帮助学生确立论文选题,又能促使学生接触社会、认识社会、使之从职业道德到专业知识得到全面培养锻炼,更能适应社会要求。
学生通过实习,可以了解我国司法的实际情况,了解从事法律工
作的人员基本素质结构,学会法律思维与工作方法,学会理论联系实际,提高运用法律分析问题和解决问题的能力和专业技能。
具体要求:
(1)了解立案受理前的工作;
(2)了解庭审前的准备工作;
(3)至少旁听一个民事案件、一个刑事案件或一个行政案件的审判过程。并在法院的安排指导下,参与庭审的准备、组织、庭审笔录的制作等方面的工作。了解开庭、庭审调查、法庭辩论、评议、宣判等程序阶段中的具体工作;
(4)了解执行程序中的具体工作;
(5)学习和掌握法院所使用的各类法律文书的写作要求、格式和写作技巧。
(6)在符合保密原则的前提下,参与具体案件的分析、讨论和评议工作。
三、实习的管理制度、实习学生必须严格遵守学院和实习单位的各项制度及有关管理规定。、遵守实习单位作息与考勤制度,不得无故迟到、早退或缺勤。3、节假日应服从实习单位统一安排。、请病假应有医院开具的疾病诊断证明书和病假单。、实习期间一般不准请事假,如有特殊情况必须请假者,必须通过指导教师报系主任经院党总支同意,假满必须办理销假手续。、无故不参加实习;在实习工作时间未请假或请假未批准而离开实习单位办理私事;或请假后无故超假;或未履行规定的请假、续假手续,一律按旷课处理。
四、特色项目
(一)共同培养应用型法律人才
法学是应用型学科,实践教学是法学教育的重要环节,毕业实习是法学实践教学的重要内容之一。我院与实习单位经过多年的合作达成共识,即从理论和实践两方面,共同培养建设社会主义法治国家需要的应用型法律人才。
(二)健全的实习制度
1、期中检查制度
(1)学院实习领导小组和导师分批前往实习基地了解学生实习情况,进一步掌握实习情况和改进实习工作;
(2)抽查实习考勤记录;
(3)学院向实习导师、学生反馈实习中存在的问题和改进建议;
(4)督促指导老师和组长加强管理、服务实习生实习。
2、信息反馈制度
(1)不定期汇报:小组组长遇到无法解决的困难应及时向指导老师报告,指导老师应做好记录并及时解决;无法解决的,向学工办报告。
(2)定期汇报:小组长每周五下午向学工办汇报本周的实习情况,学工办应做好记录。
3、请假制度
学生在实习期间请假的,需经小组长、指导老师、实习导师、学工办同意,方可请假。
(三)完备的实习档案
学生毕业实习结束,我院相关人员整理归档实习材料。如实习计划书、实习鉴定表、实习记录、实习报告、个人实习总结等有关实习材料。
五、学生实习成果集萃
1、实习记录:学生自进入实习单位之日起到离开之日止,每周记写实习记录,记录本周活动的主要内容、思想认识和业务方面的点滴体会和感受。
2、实习报告:实习报告内容包括实习概况,思想收获,业务收获(对典型案例作评析)等部分,报告内容充实、具体,结构严谨,文理通顺,书写工整。
3、个人实习总结:个人实习总结由实习学生全面总结实习期间的收获、感想、思考,要求书写真实、具体,有启发性。
4、实习鉴定表:填写实习的主要收获,工作表现及存在问题的内容。实习单位签署意见并加盖单位公章。
第四篇:2018年考研数一大纲
2018年考研数一大纲
考试科目:高等数学、线性代数、概率论与数理统计
考试形式和试卷结构
一、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟
二、答题方式
答题方式为闭卷、笔试
三、试卷内容结构
高等教学约56%
线性代数约22%
概率论与数理统计约22%
四、试卷题型结构
单选题8小题,每小题4分,共32分
填空题6小题,每小题4分,共24分
解答题(包括证明题)9小题,共94分
高等数学
一、函数、极限、连续
考试内容
函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立
数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:
函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系
2.了解函数的有界性、单调性、周期性和奇偶性
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念
4.掌握基本初等函数的性质及其图形,了解初等函数的概念
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系
6.掌握极限的性质及四则运算法则
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质 二、一元函数微分学
考试内容
导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径
考试要求
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法
3.会求有理函数、三角函数有理式和简单无理函数的积分
4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式
5.了解反常积分的概念,会计算反常积分
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值
四、向量代数和空间解析几何
考试内容
向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程
考试要求
1.理解空间直角坐标系,理解向量的概念及其表示
2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件
3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法
4.掌握平面方程和直线方程及其求法
5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题
6.会求点到直线以及点到平面的距离
7.了解曲面方程和空间曲线方程的概念
8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程
9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程
五、多元函数微分学
考试内容
多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件
多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用
考试要求
1.理解多元函数的概念,理解二元函数的几何意义
2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性
4.理解方向导数与梯度的概念,并掌握其计算方法
5.掌握多元复合函数一阶、二阶偏导数的求法
6.了解隐函数存在定理,会求多元隐函数的偏导数
7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程
8.了解二元函数的二阶泰勒公式
9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题
六、多元函数积分学
考试内容
二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用
考试要求
1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理
2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)
3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系
4.掌握计算两类曲线积分的方法
5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分
7.了解散度与旋度的概念,并会计算
8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等)
七、无穷级数
考试内容
常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数
考试要求
1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件
2.掌握几何级数与级数的收敛与发散的条件
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法
4.掌握交错级数的莱布尼茨判别法
5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系
6.了解函数项级数的收敛域及和函数的概念
7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法
8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和
9.了解函数展开为泰勒级数的充分必要条件
10.掌握,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数
11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式
八、常微分方程
考试内容
常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念
2.掌握变量可分离的微分方程及一阶线性微分方程的解法
3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程
4.会用降阶法解下列形式的微分方程
5.理解线性微分方程解的性质及解的结构
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程
7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程
8.会解欧拉方程
9.会用微分方程解决一些简单的应用问题
线性代数
一、行列式
考试内容
行列式的概念和基本性质行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握行列式的性质
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式
二、矩阵
考试内容
矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵
4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法
5.了解分块矩阵及其运算
三、向量
考试内容
向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质
考试要求
1.理解维向量、向量的线性组合与线性表示的概念
2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法
3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系
5.了解维向量空间、子空间、基底、维数、坐标等概念
6.了解基变换和坐标变换公式,会求过渡矩阵
7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法
8.了解规范正交基、正交矩阵的概念以及它们的性质
四、线性方程组
考试内容
线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解
考试要求
l.会用克拉默法则
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件
3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法
4.理解非齐次线性方程组解的结构及通解的概念
5.掌握用初等行变换求解线性方程组的方法
五、矩阵的特征值和特征向量
考试内容
矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵
考试要求
1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量
2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法
3.掌握实对称矩阵的特征值和特征向量的性质 六、二次型
考试内容
二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性
考试要求
1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理
2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形
3.理解正定二次型、正定矩阵的概念,并掌握其判别法
概率论与数理统计
一、随机事件和概率
考试内容
随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验
考试要求
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式
3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法
二、随机变量及其分布
考试内容
随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布
考试要求
1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用
3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用
5.会求随机变量函数的分布
三、多维随机变量及其分布
考试内容
多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布
考试要求
1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率
2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件
3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义
4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布
四、随机变量的数字特征
考试内容
随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征
2.会求随机变量函数的数学期望
五、大数定律和中心极限定理
考试内容
切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理
考试要求
1.了解切比雪夫不等式
2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)
3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)
六、数理统计的基本概念
考试内容
总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布
考试要求
1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念
2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算
3.了解正态总体的常用抽样分布
七、参数估计
考试内容
点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计
考试要求
1.理解参数的点估计、估计量与估计值的概念
2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法
3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性
4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间
八、假设检验
考试内容
显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验
考试要求
1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误
2.掌握单个及两个正态总体的均值和方差的假设检验
第五篇:考研高数复习大纲
一、函数、极限与连续
1.求分段函数的复合函数;
2.求极限或已知极限确定原式中的常数;
3.讨论函数的连续性,判断间断点的类型;
4.无穷小阶的比较;
5.讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。
二、一元函数微分学
1.求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;
2.利用洛比达法则求不定式极限;
3.讨论函数极值,方程的根,证明函数不等式;
4.利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如证明在开区间内至少存在一点满足……,此类问题证明经常需要构造辅助函数;
5.几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;
6.利用导数研究函数性态和描绘函数图形,求曲线渐近线。
三、一元函数积分学
1.计算题:计算不定积分、定积分及广义积分;
2.关于变上限积分的题:如求导、求极限等;
3.有关积分中值定理和积分性质的证明题;
4.定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;