1.2.2含多个绝对值不等式的解法导学案

时间:2019-05-14 21:28:49下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《1.2.2含多个绝对值不等式的解法导学案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《1.2.2含多个绝对值不等式的解法导学案》。

第一篇:1.2.2含多个绝对值不等式的解法导学案

兰州新区永登县第五中学高二数学(文)导学案

班级:小组名称:姓名:得分:

导学案 §1.2.2含多个绝对值不等式的解法

设计人:薛东梅审核人:梁国栋、赵珍

学习目标:含多个绝对值不等式的解法 学习重点:含多个绝对值不等式的解法 学习难点:含多个绝对值不等式的解法

学习方法:六动感悟法(读,想,记,思,练,悟)

一、自学评价

1.xaxbc,xaxbc(c0)的解法

(1)利用绝对值不等式的几何意义,体现了数形结合思想,是解绝对值不等式最简单的方法,但要注意理解绝对值的几何意义,给绝对值不等式以准确的几何解释是解题关键;(2)利用x-a=0,x-b=0的解,将数轴分成三个区间,然后在每个区间上将原不等式转化为不含绝对值的不等式而解之,体现了分类讨论思想,从中可以发现,以绝对值的“零点”为分界点,将数轴分为几个区间的目的是为了确定各个绝对值符号内多项式取值的正负性,进而去掉绝对值符号;

(3)通过构成函数,利用函数的图象,体现了函数与方程的思想,从中可以发现,正确求出函数的零点并画出函数图象(有时需要考察函数的单调性)是解题的关键.2.思考并完成例5

二、检测交流

1.xx32. xx35

3.xx22

第二篇:绝对值不等式学案

绝对值不等式学案(1)

(一)知识点:.(三)巩固练习:.(1)|x+4|>9(2)|11

+x|≤ 1.不等式的基本性质:

2.绝对值的定义,即|a|=_____a0

_____a0实数a的绝对值表示在数轴上所对应点A到

原点的距离,并且可以得到|a|≥0这一结论.3.按商品质量规定,商店出售的标明500 g的袋装食盐,其实际数与所标数相差

不能超过5 g,如何表达实际数与所标数的关系呢?

依据条件列出

________5

5,进而利用绝对值定义及其几何意义将其表述成|x-500|≤5,即

________一个含绝对值的不等式.(二)含绝对值不等式解法的探究

1.如何求解方程|x|=2?|x|=2的几何意义是什么?

2.能表述|x|>2,|x|<2的几何意义吗?其解集是什么?

3.请尝试归纳出一般情况下|x|>a,|x|<a(a>0)的几何意义及其解集?

4.解不等式|x-500|≤5.(三)归纳总结:|ax+b|>c,|ax+b|<c(c>0)的解法?

第1页

(3)|2-x|≥3

(5)|5x-4|<6

(四)拓展延伸:.1.解不等式|x-1|+|2-x|>3+x2.42

(4)|x-23|<1

(6)|1

x+1|≥2

解不等式|x+1|+|x-1|<1

第2页

第三篇:含绝对值不等式的解法习题课

第十一教时

三、补充:

七、已知函数f(x), g(x)在 R上是增函数,求证:f [g(x)]在 R上也是增函数。

八、函数 f(x)在 [0, 上单调递减,求f(x2)的递减区间。

九、已知函数 f(x)是定义在 R上的奇函数,给出下列命题:

1.f(0)= 0

2.若 f(x)在 [0, 上有最小值 1,则 f(x)在,0上有最大值1。

3.若 f(x)在 [1, 上为增函数,则 f(x)在 ,1上为减函数。

4.若 x > 0时,f(x)= x2  2x ,则 x < 0 时,f(x)=  x2  2x。其中正确的序号是:例

十、判断 f(x)

xx22x1x1 的奇偶性。

第四篇:含绝对值的不等式解法(总结归纳)

含绝对值的不等式解法、一元二次不等式解法

[教材分析] |x|的几何意义是实数x在数轴上对应的点离开原点O的距离,所以|x|0)的解集是

{x|-aa(a>0)的解集是{x|x>a或x<-a}。把不等式|x|a(a>0)中的x替换成ax+b,就可以得到|ax+b|c(c>0)型的不等式的解法。

一元二次不等式ax2+bx+c>0(或<0)的解可以联系二次函数y=ax2+bx+c的图象(a≠0)图象在x轴上方部分对应的x值为不等式ax2+bx+c>0的解,图象在x轴下方部分对应的x值为不等式ax2+bx+c<0的解。而方程ax2+bx+c=0的根表示图象与x轴交点的横坐标。求解一元二次不等式的步骤,先把二次项系数化为正数,再解对应的一元二次方程,最后根据一元二次方程的根,结合不等号的方向,写出不等式的解集。

求解以上两种不等式的方法,就是将不等式转化为熟悉,可解的不等式,因此一元二次不等式的求解,也可采用以下解法。

x2+3x-4<0(x+4)(x-1)<0 或 或-4

原不等式解集为{x|-4

x2+3x-4<0

(x+)2<

|x+|<-

原不等式解集为{x|-4

[例题分析与解答]

例1.解关于x的不等式|ax-2|<4,其中a∈R。

[分析与解答]:|ax-2|<4属于|x|0)型。∴-4

当a>0时,-x>,当a=0时,不等式化为2<4,显然x∈R。

故a>0时不等式解集是{x|-

例2.解不等式|x-3|-|2x+3|≥2。

[分析与解答] 去掉绝对值需要确定绝对值内代数式的值的符号,符号的正与负是以0为分界点,所以x=3和

x=-是绝对值内两个代数式值的符号的分界点。用3和-将全体实数划分成三个区间,则在每一个区间上都可确定去掉绝对值的结论,由此分情况求解。

(1)

-4≤x<-。

(2)

-≤x≤-。

(3)。

综上,原不等式的解集为{x|-4≤x<-}∪{x|-≤x≤-}={x|-4≤x≤-}。

例3.解关于x的不等式x2+(2-a)x-2a<0,其中a∈R。

[分析与解答] 设y=x2+(2-a)x-2a,其表示的抛物线开口向上,Δ=(2-a)2-4(-2a)=(2+a)2≥0,抛物线与x轴相交或相切,方程x2+(2-a)x-2a=0的两个根是-2或a。下面只需确定两个根的大小关系,就可以写出不等式的解集。

x2+(2-a)x-2a<0

(x+2)(x-a)<0

当a>-2时,原不等式解集是{x|-2

例4.已知不等式ax2+bx+c>0的解是-3

[分析与解答] 二次不等式给出解集,既可以确定对应的二次函数图象开口方向(即a的符号)又可以确定对应的二次方程的两个根,由此可根据根与系数关系建立系数字母关系式,通过代入法求解不等式。

由ax2+bx+c>0的解集是-3

且-3,1是方程ax2+bx+c=0的两个根,∴-3+1=-

∴ b=2a, c=-3a,代入所求不等式-3ax2+3ax+6a<0,∵ a<0,∴ x2-x-2<0,(x-2)(x+1)<0,∴-1

x2+(1+)x+6(-1)>0,将=-3,=2,代入得-3x2+3x+6>0,即x2-x-2<0,以下同上面解法。

在本题条件下,要求解每一个字母a,b,c的值是不正确的。由于满足条件的二次函数只要开口向下,与x轴交于点(-3,0)和(1,0)即可,而这样的二次函数有无穷多个,故a,b,c无唯一解。

例5.解关于x的不等式ax2-(a-8)x+1>0,其中a∈R。

[分析与解答] a的不同实数取值对不等式的次数有影响,当不等式为一元二次不等式时,a的取值还会影响二次函数图象的开口方向,以及和x轴的位置关系。因此求解中,必须对实数a的取值分类讨论。

当a=0时,不等式化为8x+1>0。不等式的解为{x|x>-,x∈R}。

当a≠0时,由Δ=(a-8)2-4a=a2-20a+64=(a-4)(a-16)。

(1)若016时,Δ>0,抛物线y=ax2-(a-8)x+1开口向上,方程ax2-(a-8)x+1=0两根为。

不等式的解为{x|x<或x>}。

(2)若4

(3)若a=4时,Δ=0,抛物线y=ax2-(a-8)x+1开口向上且与x轴相切,方程ax2-(a-8)x+1=0有重根x=-。不等式的解为{x|x≠-,x∈R}。

(4)若a=16时,Δ=0,抛物线y=ax2-(a-8)x+1开口向上且与x轴相切,方程ax2-(a-8)x+1=0的重根为x=。不等式的解为{x|x≠,x∈R。}。

(5)若a<0, Δ>0,抛物线y=ax2-(a-8)x+1开口向下,此时方程ax2-(a-8)x+1=0的两根大小关系是<, 不等式的解集是:

{x|

[本周参考练习]

1.关于x的不等式|ax+1|≤b的解是-

2.解不等式1<|x-2|≤7。

≤x≤,求a,b的值。

3.不等式ax2+bx+c<0的解为x<α或x>β,其中α<β<0,求不等式cx2-bx+a>0的解。4.不等式x2-ax-6a>0的解为x<α或x>β,且β-α≤5(α≠β),求实数a的取值范围。

[参考答案]: 1.解:由|ax+1|≤b, ∴-b≤ax+1≤b,∴-b-1≤ax≤b-1。当a>0时,≤x≤。

∴ , 不满足a>0,舍去。当a<0时,≥x≥。

当a=0时,不合题意,所以a=-2,b=2。

2.解由1<|x-2|≤7,∴1

3.解:必有a<0,则x2+

x+>0的解为x<α或x>β,∴α+β=-, α·β=。

将cx2-bx+a>0两边同除以a(a<0),∴

x2-x+1<0, ∴ αβx2+(α+β)x+1<0,∵ αβ>0,∴ x2+()x+<0,∴(x+)(x+)<0, ∵ α<β<0, ∴,即<, ∴->-,不等式解为-

4.解:由α≠β,∴ 方程x2-ax-6a=0有两不等根,且α,β是其两根(β>α)。

∴ β-α=,∴ a2+24a≤25,-25≤a<24或0

第五篇:《含绝对值不等式的解法》教案

《含绝对值不等式的解法》教案

本课件依据我校高三数学第一轮复习用书《步步高高考总复习—数学》及另选部分题目制作而成,全部内容都经过了课堂教学的检验,为教学过程的实录。

本节课首先给出复习目标、重点解析及知识要点,并给出了绝对值不等式||a|-|b||≤|ab|≤|a|+|b|中等号成立的充要条件,对其中较难理解的情况给出了分析或证明。

然后给出了3道典型例题,每道例题后选配训练题帮助学生巩固、掌握所复习的知识。

最后以备选题的形式给出了12道训练题(其他教师使用本课件时可根据所教学生情况的不同,选取其中的题目作为例题)。大多数题目给出了不只一种的解题方法(思路)。

由于历年高考中大部分考生数学题解答不规范,导致无谓失分,制作课件时,力求每一道题的解答都相对完整。使用课件时,先和学生一起分析解题思路,然后通过屏幕展示给学生一个完整、规范的解题过程,以提高学生正确表述知识的能力。

下载1.2.2含多个绝对值不等式的解法导学案word格式文档
下载1.2.2含多个绝对值不等式的解法导学案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    绝对值不等式解法的说课稿公开课

    包铁一中选修4-5绝对值不等式的解法说课稿讲课人:杜玉荣 各位领导和老师们大家好,我将从教材分析,学情分析,教学教法分析,教学过程,教学设计说明,板书设计几个方面对本节进行阐述。......

    分式不等式与高次不等式解法导学案

    分式不等式与高次不等式解法学习目标:1.复习巩固一元二次方程、一元二次不等式与二次函数的关系,掌握掌握简单的分式不等式和特殊的高次不等式的解法;2.激发学习数学的热情,培养勇......

    含绝对值符号的不等式的解法与证明

    [本周内容]含绝对值符号的不等式的解法与证明[重点难点]1.实数绝对值的定义:|a|= 这是去掉绝对值符号的依据,是解含绝对值符号的不等式的基础。2.最简单的含绝对值符号的不等......

    绝对值不等式教案

    绝对值不等式的解法 教学目标: 1.理解并掌握axbc与axbc(c0)型不等式的解法,并能初步地应用它解决问题。 2.培养数形结合的能力,培养通过换元转化的思想方法,培养抽象思维的能力; 3.......

    绝对值不等式的证明

    绝对值不等式的证明知识与技能:1. 理解绝对值的三角不等式,2.应用绝对值的三角不等式.过程方法与能力:培养学生的抽象能力和逻辑思维能力;提高分析问题、解决问题的能力.情感态度......

    §2.4含绝对值的不等式(推荐)

    §2.4含绝对值的不等式 班级姓名一、学习目标 1、 体会绝对值的几何意义 2、 会用变量代换的思想方法解含绝对值的不等式 二、重点、难点 重点:会用变量代换的思想方法解含绝......

    绝对值不等式题型五

    典型例题五例5 求证ab 1aba 1ab 1b. 分析:本题的证法很多,下面给出一种证法:比较要证明的不等式左右两边的形式完全相同,使我们联想利用构造函数的方法,再用单调性去证明. 证明:设f(......

    不等式的解法练习题

    职三数学课堂练习题(4) 不等式的解法练习题 1、已知a∈R,则“a>2”是“a2>2a”成立的 A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件 2、不等式3x10的解集......