第一篇:第四讲直线植树问题
第四讲直线植树问题
【例题求解】
例一五一班同学参加春季植树的活动,要在一条长100米的马路一边植上树,每两棵树之间的间隔都是4米。请你帮五一班同学算一算他们一共要植树多少棵?
例
二、学校要在两幢教学楼之间栽杨树,每隔5米栽一棵杨树,两端不栽树,一共栽了32棵杨树。两幢教学楼相距多少米?
例三、一条小路,同学在路的两边植树,每个五米种一棵树(两端都要种)一共种了20棵树苗,小路全长多少米?
例四 将一根圆木锯成5分米长的小段共需10分。已知每锯下一小段需要2分,问:这根圆木长多少分米?
例五 大人上楼的速度是小孩上楼的3倍,小孩从一楼到四楼要9分钟。问:大人从一楼到八楼要多少分钟?
【学力训练】
1、有一段江堤全长600米,从头到尾每隔6米栽一棵水杉树,可栽多少棵水杉树?
2、鹤壁市新修的一段路,路长720米,每隔3米种1棵树,两端都种。两边一共可种多少棵树?
3、王大爷要在两棵树相距5米的玉米苗之间每隔2分米补一棵玉米苗,一共要补多少棵玉米
苗?
4、一条路的路边每隔25米有1根电线杆,连两端共有20根。算一算,这条路有多长?
5、在一条公路的两侧栽树,从起点到终点一共栽了22棵,已知相邻两棵树之间的距离是3米,你能求出这条路长多少密吗?
6、木工师傅要把一根长10米的圆木锯成6段,每锯一段要用5分,木工师傅锯完这根圆木需
要几分?
7、甲、乙两人比赛爬楼梯,甲跑到5层时,乙恰好跑到3层,照这样计算,甲跑到17层时,乙跑到多少层?
8、有两名同学比赛爬楼梯,甲同学爬到第六层时,乙同学爬到第九层,当甲同学爬到第十一层时,一同学应爬到第几层?
9、解放军一个连244人,排成四路纵队,已知队伍前后前后每排相距2米。求这支队伍长多少
米?
10、在旅游节的开幕式上,参加表演的彩车车队共有80辆车人,每辆车长6米,两辆车前后相隔5米,这个彩车车队全长多少米?
【课后作业】
1、在一条长30米的走廊两边,每隔5米放1盆花,两端都放。一共需要放多少盆花?
2、两棵杨树相隔600米,计划在这两棵树之间栽59棵小树,每两棵树间隔相等。问:栽完后,每两棵树之间的间隔是多少米?
3、在一段公路的一旁栽了98棵树,两端都栽,每两棵树之间相距15米。问:这段公路长多少
米?
4、木工师傅要把一段木料锯成5小段,每锯下一小段需要15分,他从上午8时10分开始工作,锯完时是几时几分?
5、豆豆爬楼梯,豆豆跑到4层时,用了60秒,照这样计算,当豆豆跑到第16层时,一共用了
多少秒?
第二篇:第四讲平均数问题(教案)
平均数问题
一、知识要点
平均数在我们的生活中经常被用到,比如我们经常用各科成绩的平均分数来比较同学之间、班级之间成绩的好坏。求各科成绩的平均分数就是求平均数。平均数问题不仅用在求平均分数上,还应用在很多方面。比如由同年龄不同地区儿童的平均身高、平均体重来分析儿童生长发育的情况等。
在求平均数时,必须知道两个条件:(1)被均分事物的总数量;(2)要均分的总份数。它们之间的关系是:
总数量 =平均数×总份数
我们看到,对于平均数、总数量、总份数这三个量,只要知道其中的任意两个量就可以求出第三个量。
二、例题
例
1、乐乐参加数学考试,前两次的平均分数是85分,后三次的平均分数是90分,问乐乐前后几次考试的平均分数是多少?
分析:利用前两次考试的平均分数可以求出前两次考试的总分数,同理,也可以求出后三次考试的总分数,然后用前后几次考试的总分数除以总次数就是所求的平均分数。
解:(85×2+90×3)÷(2+3)
=440÷5
=88(分)
答:乐乐前后几次考试的平均分数是88分。
练一练:萍姐姐去爬山,上山时的速度是每小时2千米,下山时的速度是每小时6千米,那么,她在上下山全过程中的平均速度是每小时多少千米?
分析:平均速度=总路程÷总时间。显然,萍姐姐上下山的平均速度,等于萍姐姐上下山的总路程除以上下山所用时间的总和。而题目中没有给出爬山的路程,也无法求出爬山路程。为此,我们可以假设山路为12千米,则上下山的路程为2×12千米。
解:2×12÷(12÷2+12÷6)
=24÷(6+2)
=24÷8
=3(千米/时)
答:萍姐姐上下山的平均速度是每小时3千米。
问:萍姐姐上下山的平均速度,像下面这样计算可以吗?为什么?
(2+6)÷2=4(千米/时)
(变式练习):小明从甲地到乙地一半时间骑自行车,一半时间步行。步行速度为每小时8千米;骑车速度为每小时24千米。求此人从甲地到乙地的平均速度。
分析:题目中没有给出总共行了多少时间,也没有给出甲地到乙地的距离。不妨假设总共行了2小时,那么所行路程就可以简单地计算出,相应的平均速度也可以求出来了。要是设共行
内部资料 小时,6小时等,也同样方便地算得同一结果。
解:(8×1+24×1)÷(1+1)=16(千米/时)答:此人从甲地到乙地的平均速度为16千米/时.问:此题的平均速度可以像下面这样计算吗?为什么?
(8+24)÷2=16(千米/时)
例
2、已知八个连续奇数的和是144,求这八个连续奇数。
分析:八个连续奇数的特点就是第一个和第八个的和、第二个和第七个的和、第三个和第六个的和、第四个和第五个的和都是相等的,也就是说,144是4个相同数的和。
解:每组数的和是:144÷4=36
中间两个数是:(36-2)÷2=17
17+2=19
因此,这八个连续奇数分别是:11、13、15、17、19、21、23、25.答:这八个连续奇数分别是:11、13、15、17、19、21、23、25.练一练:5个数的平均数是102,如果把这5个数从小到大排列,那么前3个数的平均数是70,后3个数的和是390。问:中间的那个数是多少?
解:前3个数与后3个数的总和是:70×3+390=600;
5个数的和是:102×5=510;
中间那个数是:600-510=90
答:中间那个数是90.(变式练习)把自然数1,2,3,4,„„,998,999分成三组,如果每一组数的平均数恰好相等,那么这三个平均数的和是多少?
分析:1,2,3,4,„„,998,999是连续的自然数。从1开始的连续自然数的平均数是什么特点呢?我们把上述问题先化小到“把1,2,3,4,„„,9这九个自然数分成三组,如果每一组的数平均数恰好相等,那么每一组的平均数是多少?”因为每一组的平均数都相等,所以这个平均数应该和总平均数相等。
这九个数的总平均数是:(1+2+3+4+„+9)÷9=45÷9=5,正好是这列数中间的一个数,可以用(1+9)÷2=5得到。由此可以推断:从1开始的连续个自然数的平均数可以用(第一个数+最后一个数)÷2得到。如果是连续奇数个自然数,那么平均数就是这列数中间的那个数。
解:因为每一组的数平均数恰好相等,所以这个平均数应该和总平均数相等,并且这个平均数应该是:(1+999)÷2=500 三个平均数的和是500×3=1500 答:三个平均数的和是500×3=1500.例
3、有六个数排成一列,它们的平均数是27,前四个数的平均数是23,后三个数是34,求第四个数是多少?
分析:前四个数与后三个数中,第四个数重复计算,所以这七个数的总和比六个数的和多的数就是第四个数。
解:23×4+34×3-27×6
=92+102-162 内部资料
=32 答:第四个数是32.练一练:阿呆、乐乐和丫丫3人,阿呆、乐乐的年龄之和是24岁,阿呆、丫丫的年龄和是20岁,乐乐、丫丫的年龄和是16岁。问:阿呆、乐乐和丫丫3人的平均年龄是多少岁?
解:由题目可知,24+20+16得到的数是2个阿呆、2个乐乐和2个丫丫的年龄之和,因此将该数除以2就得到阿呆、乐乐和丫丫三人的年龄之和。
(24+20+16)÷2÷3=10(岁)
答:阿呆、乐乐和丫丫3人的平均年龄是10岁。
(变式练习)丫丫期末考试语文、数学、常识平均成绩是85分,外语成绩公布后,她的平均成绩提高了2分。问:丫丫外语考了多少分?
分析:要求出外语考了多少分,必须先分别求出3门功课和4门功课的总分数。由三门功课平均分数85分,可以求出三门功课的总分数85×3=225(分),又由外语成绩公布后,他的平均分提高了2分,可得他四门功课的总分数是:(82+2)×4=348(分),因此,总分之差就是外语成绩了。
解:(82+2)×4-85×3
=348-255
=93(分)
答:丫丫外语考了93分。
例
4、为了支援西部,1班班长小明和2班班长小红带了同样多的钱买了同一种书44本,钱全部用完。小明要了26本书,小红要了18本书。回校后,小明补给小红28元。问:小明、小红各带了多少元?每本书的价格是多少?
分析:因为两人带了同样多的钱,刚好买了同一种书44本,因此,每人的钱恰好能买这种书的数目是:44÷2=22(本)。小明补为小红的28元钱,是小明多买的书的价钱,也就是4本书的价钱。
解:每本书的价格为:28÷(26-44÷2)=7(元)
小明、小红各带的钱数:44×7÷2=154(元)
答:小明、小红各带了154元,每本书的价格为7元。
练一练:一个旅游团租车出游,平均每人应付车费40元。后来又增加了8人,这样每人应付的车费是35,问:租车费是多少元?
解:后来增加的8人所付的总费用为:35×8=280(元)
增加8人后,每人应付的车费减少了:40-35=5(元)
后来增加的8人所付的总费用应与原人数所少付的总费用相等,因此:
原有人数为:280÷5=56(人)
租车费为:40×56=2240(元)答:租车费为2240元。
(变式练习)今年前5个月,小明共存钱21元,从6月起,他每月储蓄6元钱,那么从哪个月起小明的平均储蓄超过5元? 内部资料 解:前5个月,小明每月平均存钱:21÷5=4.2(元)
若要平均储蓄超过5元,则需要从后几个月的储蓄中挪出一部分给前5个月,且需要挪(5-4.2)×5=4(元);而从5月起,每个月储蓄6元钱,6-5=1(元),即每个月可以拿出1元补给前5个月,4÷1=4(个),所以从5+4+1=10月起,小明的平均储蓄超过5元。
例
5、某商场食品部将10千克巧克力糖,12千克奶糖,8千克水果糖合成一种混合糖。已知巧克力糖每千克18元,奶糖每千克12元,水果糖每千克6元,求混合糖平均每千克多少元?
解:混合糖的总价钱是:10×18+12×12+8×6=372(元)
混合糖重:10+12+8=30(千克)
混合糖平均每千克的价钱是:327÷30=12.4(元)答:混合糖每千克的价钱是12.4千克。
练一练:牛奶糖每千克17.8元,巧克力糖每千克21元,牛奶糖5千克与巧克力糖多少千克混合后,平均每千克19元?
解:每千克牛奶糖的价钱比混合后每千克的价钱少:19-17.8=1.2(元)
5千克牛奶糖的价钱比混合后5千克的价钱少:1.2×5=6(元)
每千克巧克力糖的价钱比混合后每千克的价钱多:21-19=2(元)
要想混合后平均每千克19元,则需要巧克力糖:6÷2=3(千克)答:需要巧克力糖3千克。
(变式练习)商店用相同的费用,买进甲、乙两袋不同的糖果,已知甲袋糖果每千克需要6元,乙袋糖果每千克需要4元,如果把两袋糖果混合在一起,那么这种混合糖每千克的成本是多少元?
解:假设商店分别用了12元买来甲、乙两袋糖果,则
甲袋糖果有:12÷6=2(千克)
乙袋糖果有:12÷4=3(千克)
混合糖每千克的成本:12×2÷(2+3)=4.8(元)答:这种混合糖每千克的成本是4.8元。
内部资料
第三篇:第四讲四点共圆问题
第四讲四点共圆问题
“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.判定“四点共圆”的方法,用得最多的是统编教材《几何》二册所介绍的两种(即P89定理和P93例3),由这两种基本方法推导出来的其他判别方法也可相机采用.“四点共圆”作为证题目的例1.给出锐角△ABC,以AB为直径的圆与AB边的高CC′及其延长线交于M,N.以AC为直径的圆与
AC边的高BB′及其延长线将于P,Q.求证:M,N,P,Q四点共圆.(第19届美国数学奥林匹克)
分析:设PQ,MN交于K点,连接AP,AM.欲证M,N,P,Q四点共圆,须证 AMK·KN=PK·KQ,Q即证(MC′-KC′)(MC′+KC′)C′=(PB′-KB′)·(PB′+KB′)
2222或MC′-KC′=PB′-KB′.不难证明 AP=AM,从而有 B2222AB′+PB′=AC′+MC′.2222故 MC′-PB′=AB′-AC′
2222=(AK-KB′)-(AK-KC′)
22=KC′-KB′.②
由②即得①,命题得证.O例2.A、B、C三点共线,O点在直线外,O1O1,O2,O3分别为△OAB,△OBC,△OCA的外心.求证:O,O1,O2,O2O3四点共圆.3(第27届莫斯科数学奥林匹克)
A分析:作出图中各辅助线.易证O1O2垂直平分OB,O1O3垂直平分OA.观察△OBC及其外接圆,立得∠BC
OO2O1=11∠OO2B=∠OCB.观察△OCA及其外接圆,立得∠OO3O1=∠OO3A=∠OCA.22
由∠OO2O1=∠OO3O1O,O1,O2,O3共圆.利用对角互补,也可证明O,O1,O2,O3四点共圆,请同学自证.以“四点共圆”作为解题手段
这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面.(1)证角相等
例3.在梯形ABCD中,AB∥DC,AB>CD,K,M分别在AD,BC上,∠DAM=∠CBK.求证:∠DMA=∠CKB.CD(第二届袓冲之杯初中竞赛)
分析:易知A,B,M,K四点共圆.连接KM,有∠DAB=∠CMK.∵∠DAB+∠ADC KM
=180°,∴∠CMK+∠KDC=180°.AB故C,D,K,M四点共圆∠CMD=∠DKC.但已证∠AMB=∠BKA,∴∠DMA=∠CKB.(2)证线垂直 例4.⊙O过△ABC顶点A,C,且与AB,BC交于K,N(K与N不同).△ABC外接圆和△BKN外接圆相交于B和
BM.求证:∠BMO=90°.(第26届IMO第五题)分析:这道国际数学竞赛题,曾使许多选手望而却步.共圆”,问题是不难解决的.连接OC,OK,MC,MK,延长BM到G.易得∠GMC=
∠BAC=∠BNK=∠BMK.而∠COK=2·∠BAC=∠GMC+
∠BMK=180°-∠CMK,∴∠COK+∠CMK=180°C,O,K,M四点共圆.在这个圆中,由
OC=OK OC∠OMC=∠OMK.但∠GMC=∠BMK,故∠BMO=90°.(3)判断图形形状
例5.四边形ABCD内接于圆,△BCD,△ACD,△ABD,△ABC的内心依次记为IA,IB,IC,ID.试证:IAIBICID是矩形.(第一届数学奥林匹克国家集训选拔试题)
分析:连接AIC,AID,BIC,BID和DIB.易得
11∠ADB=90°+ 22
∠ACB=∠AIDBA,B,ID,IC四点 ∠AICB=90°+
共圆.同理,A,D,IB,IC四点共圆.此时 IBAC1∠AICID=180°-∠ABID =180°-∠ABC,2
1∠AICIB=180°-∠ADIB=180°-∠ADC,2
∴∠AICID+∠AICIB A1(∠ABC+∠ADC)2
1=360°-×180°=270°.2=360°-故∠IBICID=90°.同样可证IAIBICID其它三个内角皆为90°.该四边形必为矩形.(4)计算
2例6.正方形ABCD的中心为O,面积为1989㎝.P为正方形内
一点,且∠OPB=45°,PA:PB=5:14.则PB=__________
(1989,全国初中联赛)CD分析:答案是PB=42㎝.怎样得到的呢?
连接OA,OB.易知O,P,A,B
四点共圆,有∠APB=∠AOB=90°.222故PA+PB=AB=1989.由于PA:PB=5:14,可求PB.BA(5)其他
例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并
求出这两个面积(须证明你的论断).(1978,全国高中联赛)
分析:设△EFG为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方形的三EA条边上,所以不妨令F,GD·作正△EFG的高EK,易知E,K,G,D四点共圆∠KDE=∠KGE=60°.同
理,∠KAE=60°.故△KAD也是一个正 FGK三角形,K必为一个定点.CB
又正三角形面积取决于它的边长,当KF丄AB时,边长为1,这时边长最小,而面积S=
也最4
小.当KF通过B点时,边长为2·23,这时边长最大,面积S=23-3也最大.例8.NS是⊙O的直径,弦AB丄NS于M,P为ANB上异于N的任一点,PS交AB于R,PM的延长线
交⊙O于Q.求证:RS>MQ.(1991,江苏省初中竞赛)
分析:连接NP,NQ,NR,NR的延长线交⊙O于Q′.连接
MQ′,SQ′.易证N,M,R,P四点共圆,从而,∠SNQ′=∠MNR=
∠MPR=∠SPQ=∠SNQ.根据圆的轴对称性质可知Q与Q′关于NS成轴对称MQ′=MQ.又易证M,S,Q′,R四点共圆,且RS是这个圆的直径(∠RMS=90°),MQ′是一条弦(∠MSQ′<90°),故RS>MQ′.但MQ=MQ′,所以,RS>MQ.练习题
1.⊙O1交⊙O2 于A,B两点,射线O1A交⊙O2 于C点,射线O2A
交⊙O1 于D点.求证:点A是△BCD的内心.(提示:设法证明C,D,O1,B四点共圆,再证C,D,B,O2
四点共圆,从而知C,D,O1,B,O2五点共圆.)
2.△ABC为不等边三角形.∠A及其外角平分线分别交对边中垂线于A1,A2;同样得到B1,B2,C1,C2.求证:A1A2=B1B2=C1C2.(提示:设法证∠ABA1与∠ACA1互补造成A,B,A1,C四点共圆;再证A,A2,B,C四点共圆,从而知A1,A2都是△ABC的外接圆上,并注意∠A1AA2=90°.)
3.设点M在正三角形三条高线上的射影分别是M1,M2,M3(互不重合).求证:△M1M2M3也是正三角形.4.在Rt△ABC中,AD为斜边BC上的高,P是AB上的点,过A点作PC的垂线交过B所作AB的垂线于Q点.求证:PD丄QD.(提示:证B,Q,E,P和B,D,E,P分别共圆)
5.AD,BE,CF是锐角△ABC的三条高.从A引EF的垂线l1,从B引FD的垂线l2,从C引DE的垂线l3.求证:l1,l2,l3三线共点.(提示:过B作AB的垂线交l1于K,证:A,B,K,C四点共圆)
第四篇:第四讲盈亏问题教案
第四讲:盈亏问题
第一课时
教学时间:
教学内容:教学例1 教学目标:初步感知盈亏问题,了解解决盈亏问题的一般方法。重点难点:培养学生分析问题、解决问题的能力。教学过程:
一、导入,初步感知盈亏问题。
在日常生活中,我们常常要分配东西。已知两种分配方法,按一种方法分配,东西有余(称作“盈”),而按另一种方法分配,东西不足(称作“亏”),求参加分配的人数及被分配的总量。我们称这样的算术应用题为盈亏问题。解盈亏问题,常常通过比较法。
例如:学校春游,租了几条船让学生划,每条船坐3人,有16人没船划,如果每条船坐5人,则有一条船上差4人,问共有学生多少人?共租了多少条船?
在题目中,无论如何分配,学生的人数与船的条数是不变的。比较两种分配方法,第一种和第二种分配方法中人数一多一少相差4+16=20(人)。相差的原因在于两种方法的分配数不同,两次分配每条船相差 5-3=2(人)。每条船相差2人,那么多少条船会相差20人? 由此可求出船的条数,20÷2=10(条),所以学生总人数可列式计算:3×10+16=46(人)
或列式5×10-4=46(人)算出。
列综合算式:
(4+16)÷(5-3)=10(条)
3×10+16=46(人)
答:共有学生46人,共租了10条船。
二、通过分析,我们知道解盈亏问题的关键在于确定两次分配数的差与盈亏的总额(盈数+亏数)。解题时要注意:(1)要认真审题,仔细分析,确定用盈亏总额÷两次分配数之差得到的是题目中的哪个量,不能张冠李戴。
(2)两种分配方法不一定总是一“盈”一“亏”,还可能是两个都“盈”,两个都“亏”,或者是一个“不盈不亏”,另一个“盈”或“亏”等情况。
二、教学例1
1、出示例题
例1:学校春游,租了几条船让学生划,每条船坐3人,则有20人没船划,如果每条船坐5人,恰恰安排好,问共有学生多少人?共租了多少条船?
2、学生尝试解答。
3、说一说题中的两种分配方法 第一种分配“盈”20人 第二种分配“不盈亏”
4、分析与解
盈亏总额为20+0=20,又可知每条船相差5-3=2(人),所以: 有船:20÷(5-3)=10(条)有学生:5×10=50(人)
答:共有学生50人,共租了10条船。
三、及时练习
学雷锋小组参加植树活动,如果每人栽5棵,还剩12棵树;如果每人栽7棵,就缺4棵树。问这个小组有多少人?一共要栽多少棵树?
四、质疑
说一说你在本节课遇到的困难,师生共同解惑。
五、课堂小结
1、提问:这节课你学到了什么?
2、引导学生说一说解决盈亏问题的关键和方法。
第二课时
教学时间:
教学内容:教学例2 教学目标:让学生在理解的基础上,熟练的解决盈亏问题。重点难点:弄清盈亏。
教学过程:
一、说一说,你知道盈亏问题有多少。
二、提问:盈亏问题里的两种分配方法一定是一盈一亏吗?
三、出示例2 例
2、学校春游,租了几条船让学生划,每条船坐3人,则空2人的位置,如果每条船坐5人,则空出16人的位置,问共有学生多少人?共租了多少条船?
1、学生读题,说一说两种分配方法有什么不一样。
2、学生独立完成解决问题。看谁做得又对又快。
3、请学生说解题过程,教师板书
有船:
(16-2)÷(5-3)=7(条)有学生: 3×7-2=19(人)
答:共有学生19人,共租了7条船。
四、巩固练习
1、学校用一批书奖励“三好学生”,若每人奖5本,则多80本;若每人奖7本,则多20本。共有多少名“三好学生”?多少本书?
2、四
(一)班学生参加植树,分成若干组,如果10人一组,正好分完,如果12人一组,差10人。参加植树的有多少人?
3、一幼儿园给小朋友分糖果,如果每个小朋友分10颗,则有两个小朋友没有分到,如果每个小朋友分8颗,则刚好分完,有多少颗糖果?多少个小朋友?
五、课堂小结
通过这节课的学习,你发现自己有哪些进步。
第三课时
教学时间:
教学内容:教学例3 教学目标:较复杂盈亏问题的求解。
重点难点:
1、学会分析这一类型题的数量间的关系。
2、能灵活运用盈亏问题的解题方法来解决问题。教学过程:
一、教学例3 例
3、用绳子测池水深,绳子两折时,多余60厘米,绳子三折时,还差40厘米,求绳长和池水深。
1、学生读题,教师用实物演示两折、三折。
2、小组讨论交流
3、小组汇报想法
4、分析与解
绳子二折时,绳子多余的长度是
60×2=120(厘米)
绳子三折时,绳子不够的长度是
40×3=120(厘米)所以“盈亏总额”为120+120=240(厘米)。根据盈亏问题计算公式: 池水深:(120+120)÷(3-2)=240(厘米)绳长:(240+60)×2=600(厘米)
5、你知道还可以怎样求绳长吗?
6、小组交流
解决这道题要注意什么?
7、引导学生总结方法
二、及时练习
1、用一根绳子测量桥的高度,如果绳子两折时,多5米;如果绳子3折时,差4米,求绳子长和桥高?
3、一根绳吊一重物测水深,水面上还留6米,如果把这根绳子对折起来,再接上3米的绳子,可达水底。问绳子和水深各是多少米?
三、自编一道这一类型的题,同桌之间相互解答。
第四课时
教学时间:
教学内容:教学例
4、例5 教学目标:较复杂盈亏问题的求解。
重点难点:在题目没有直接清楚的告诉盈亏的情况下弄清盈亏。并准确熟练的解答。教学过程:
一、教学例4 学校组织乘汽车外出旅游,如果每车坐65人,则有15人乘不上车。如果每车多坐5人,恰好多余了一辆车。问一共有几辆汽车,有多少学生? 分析与解
每车多坐5人,也就是每车坐5+65=70(人),恰好多余一辆车,说明还差一辆车的人,即70人。
因而,原问题转化为: 如果每车坐65人,则有15人乘不上车,如果每车坐70人,则还差70人。求有多少辆汽车?有多少学生?
转化成了典型的盈亏问题
(15+70)÷(70-65)=17(辆)65×17+15=1120(人)
答:一共有17辆汽车,1120名学生。
二、及时练习
1、某校有若干个学生寄宿学校,若每一间宿舍住6人,则多出34人;若每间宿舍住7人,则多出4间宿舍。问宿舍有多少间?寄宿学生有多少人?
2、学校分配学生宿舍。如果每个房间住6人,则少2间宿舍;如果每个宿舍住9人,则空出2个房间。问学生宿舍有多少间?住宿学生有多少人?
三、学生听故事,解决问题。例5 解放军某部调动一批战士分乘一批车辆赶往汛地抗洪。原计划每辆汽车乘32人,则多出5人,他们被安排乘坐在其中的某辆车上,行进中由于紧急任务调走一辆车,这时只好重新只能派每辆车乘35人,这样多出7人,他们被安排在其中某辆车上。问原来有多少辆车?共派出多少名战士?
1、组讨论交流
2、学生列式解答
3、说一说解题过程。汽车数:(35-7+5)÷(35-32)=11(辆)战士数:32×11+5=357(人)
答:原来有11辆车,有战士357人。
四、课堂小结
谈谈本节课的收获。
第五篇:第一讲__植树问题讲义
植树问题 讲义
植树问题
知识概要
解答植树问题要考虑植树的方式,通常有两种情况:
1、在不封闭的路线上植树,①两端都植树,那么植树的棵树=间隔数+1;②一端植树,一端不植树,棵树=间隔数;③两端都不植树,棵树=间隔数−1。
2、在封闭的路线上植树,棵树=间隔数。
植树问题中常用的数量关系式:
总长=间距×间隔数间隔数=总长÷间距间距=总长÷间隔数
例题讲解
例
1、植树节快到了,三(1)班的同学在一条长30米的小路的一边栽树,每隔5米栽一棵。如果两端都栽树,需要栽多少棵?
例
2、学校鼓号队参加区秋季运动会开幕式,打大鼓的和打小鼓的有64人,打叉的有24人,吹号的有32人。他们每8人站成一行,前后两行间隔2米,他们以每分钟20米的速度通过长30米的主席台需要多少分钟?
例
3、一个池塘的周长为900米,村民准备在它的周围每隔6米栽一棵柳树,应该准备多少棵柳树才够栽?
例
4、王师傅把一根木头锯成3段用了8分钟,如果这根木头锯成8段,需要多少分钟?
例
5、小红从一楼爬到四楼要6分钟,小军爬楼的速度是小红的2倍,请问小军从一楼爬到五楼要几分钟?
拓展训练
1、学校举行田径运动会,要在跑道的一侧从头到尾每隔4米插一面彩旗,已知学校跑道长100米,需要插多少面小旗?
2、人民南路两边从头到尾共有路灯184盏,每相邻的两盏灯之间相距20米,人民南路长多少米?
3、一个圆形的花坛,周长为160米,每隔8米种一株月季,每相邻的两株月季之间均匀的栽三株牡丹。可以栽多少株牡丹?
4、一根钢管,锯成5段要用12分钟,把另外同样的一根钢管以同样的速度锯成10段,共要几分钟?
5、爸爸和小芳一同上楼。小芳从一楼到五楼花了8分钟,爸爸上楼的速度是小芳的3倍,那么爸爸从一楼到七楼要多少分钟?
能力检测
1、在一条长300米的街道上,如果每隔6米栽一棵树,两端都不栽、两端都栽,各需要多少棵树?
2、为了庆祝国庆节,学校在校门口的大道两边从头到尾一共挂了50个红灯笼,每两个灯笼之间相距5米,这条大道长多少米?
3、有一台挂钟,在3点整时敲了3下,6秒钟敲完,那么这台挂钟在12点整时敲12下,需要几秒钟敲完?
4、蓉蓉和明明比赛爬楼梯,明明爬到4楼时,蓉蓉恰好爬到3楼。照这样计算,当明明爬到16楼时,蓉蓉爬到几楼?
5、园林管理处在一个湖泊的周围铺了一条长1800米的小路,小路边每隔6米栽一棵樟树,然后每隔5棵樟树安放一张长椅,湖边一共载了多少棵樟树?一共安放了几张长椅?
6、学校举行运动会入场式,三年级的同学参加队列表演,有60人参加,每4人一行,前后两行间隔3米,主席台长8米。他们以每分钟10米的速度通过主席台,需要多少分钟?
7、一根300厘米长的小棒,如果每锯一次要2分钟,那么把这根木棒锯成15厘米的小棒,共需要多少分钟?
8、一个时钟4点钟敲4下,9秒钟敲完,那么8点钟敲8下,几秒钟敲完?
9、物业公司计划在小区里的一条道路的一旁栽175棵桂花树。相邻的两棵树相隔8米,后来决定只栽117棵。问:现在相邻的两棵桂花树应相距多少米?
10、有一根180厘米长的绳子,从一端开始每3厘米做一个记号,每隔5厘米也做一个记号,然后将标有记号的地方剪断,绳子共被剪成了多少段?
练习
一、填空题
1.一块三角形地,三边之长分别为156米、234米、186米,要在三边上植树,株距6米,三个角上各有一棵,共植树棵.2.一条马路长440米,在路的两旁每隔8米种一棵树,两端都种,共种棵树.3.两棵柳树相距408米,计划在这两棵柳树之间补栽小树23棵,每两棵树间隔相等,则树的间隔米.4.公路的每边相隔7米有一棵槐树,芳芳乘电车3分钟看到公路的一边有槐树151棵,电车的速度是每分钟米.5.国庆节接受检阅的一列车队共52辆,每辆车长4米,前后每辆车相隔6米,车队每分钟行驶105米.这列车队要通过536米长的检阅场地,要分钟.6.在相距100米的两楼之间栽树,每隔10米栽1棵,共栽了棵树.7.圆形滑冰场周长400米,每隔20米装一盏灯,共要装盏灯.8.一段公路长3600米,在公路两旁每隔9米栽一棵梧桐树,两端都栽,共栽梧桐树棵.9.一个湖泊周长1800米,沿湖泊周围每隔3米栽一棵柳树,每两棵柳树中间栽一棵桃树,湖泊周围栽柳树棵,栽桃树棵.二、解答题
11.一人以相等的速度在小路上散步,从第一棵树走到第12棵树用了11分钟,如果这个人走了25分钟,应走到的第几棵树.12.在一个正方形的场地四周种树,四个顶点都有一棵,这样每边都种有24棵,四周共种多少棵树.13.参加阅兵的战士有1200人,平均分成5个大队,队距是7.5米.每队6人为一排,排距是2米.整个队伍的总长有多少米.14.锯一条4米长的圆柱形的钢条,锯5段耗时1小时20分.如果把这样的钢条锯成半米长的小段,需要多少分钟.