避雷器SPD工作原理和结构

时间:2019-05-15 02:47:39下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《避雷器SPD工作原理和结构》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《避雷器SPD工作原理和结构》。

第一篇:避雷器SPD工作原理和结构

避雷器SPD工作原理和结构

电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。

电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。

一、SPD的分类:

1.按工作原理分:

(1)开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。

(2)限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。

(3)分流型或扼流型

分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。

扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。

用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。

2.按用途分:

(1)电源保护器:交流电源保护器、直流电源保护器、开关电源保护器等。

(2)信号保护器:低频信号保护器、高频信号保护器、天馈保护器等。

二、SPD的基本元器件及其工作原理:

1.放电间隙(又称保护间隙):

它一般由暴露在空气中的两根相隔一定间隙的金属棒组成,其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F作用以及热气流的上升作用而使电弧熄灭的。

2.气体放电管:

它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的,气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频耐受电流In;冲击耐受电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF)

气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥1.8U0(U0为线路正常工作的直流电压)

在交流条件下使用:U dc≥1.44Un(Un为线路正常工作的交流电压有效

3.压敏电阻:

它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其两端的电压达到一定数值后,电阻对电压十分敏感。它的工作原理相当于多个半导体P-N的串并联。压敏电阻的特点是非线性特性好(I=CUα中的非线性系数α),通流容量大(~2KA/cm2),常态泄漏电流小(10-7~10-6A),残压低(取决于压敏电阻的工作电压和通流容量),对瞬时过电压响应时间快(~10-8s),无续流。

压敏电阻的技术参数主要有:压敏电压(即开关电压)UN,参考电压Ulma;残压Ures;残压比K(K=Ures/UN);最大通流容量Imax;泄漏电流;响应时间。

SPD工作原理和结构

压敏电阻的使用条件有:压敏电压:UN≥[(√2×1.2)/0.7]U0(U0为工频电源额定电压)

最小参考电压:Ulma≥(1.8~2)Uac(直流条件下使用)

Ulma≥(2.2~2.5)Uac(在交流条件下使用,Uac为交流工作电压)

压敏电阻的最大参考电压应由被保护电子设备的耐受电压来确定,应使压敏电阻的残压低于被保护电子设备的而损电压水平,即(Ulma)max≤Ub/K,上式中K为残压比,Ub为被保护设备的而损电压。

4.抑制二极管:

抑制二极管具有箝位限压功能,它是工作在反向击穿区,由于它具有箝位电压低和动作响应快的优点,特别适合用作多级保护电路中的最末几级保护元件。抑制二极管在击穿区内的伏安特性可用下式表示:I=CUα,上式中α为非线性系数,对于齐纳二极管α=7~9,在雪崩二极管α=5~7。

抑制二极管的技术参数主要有

(1)额定击穿电压,它是指在指定反向击穿电流(常为lma)下的击穿电压,这于齐纳二极管额定击穿电压一般在2.9V~4.7V范围内,而雪崩二极管的额定击穿电压常在5.6V~200V范围内。

(2)最大箝位电压:它是指管子在通过规定波形的大电流时,其两端出现的最高电压。

(3)脉冲功率:它是指在规定的电流波形(如10/1000μs)下,管子两端的最大箝位电压与管子中电流等值之积。

(4)反向变位电压:它是指管子在反向泄漏区,其两端所能施加的最大电压,在此电压下管子不应击穿。此反向变位电压应明显高于被保护电子系统的最高运行电压峰值,也即不能在系统正常运行时处于弱导通状态。

(5)最大泄漏电流:它是指在反向变位电压作用下,管子中流过的最大反向电流。

(6)响应时间:10~11s 5.扼流线圈:扼流线圈是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。扼流线圈使用在平衡线路中能有效地抑制共模干扰信号(如雷电干扰),而对线路正常传输的差模信号无影响。这种扼流线圈在制作时应满足以下要求:

(1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。

(2)当线圈流过瞬时大电流时,磁芯不要出现饱和。

(3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。

(4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力。

6. 1/4波长短路器

1/4波长短路器是根据雷电波的频谱分析和天馈线的驻波理论所制作的微波信号电涌保护器,这种保护器中的金属短路棒长度是根据工作信号频率(如900MHZ或1800MHZ)的1/4波长的大小来确定的。此并联的短路棒长度对于该工作信号频率来说,其阻抗无穷大,相当于开路,不影响该信号的传输,但对于雷电波来说,由于雷电能量主要分布在n+KHZ以下,此短路棒对于雷电波阻抗很小,相当于短路,雷电能量级被泄放入地。

由于1/4波长短路棒的直径一般为几毫米,因此耐冲击电流性能好,可达到30KA(8/20μs)以上,而且残压很小,此残压主要是由短路棒的自身电感所引起的,其不足之处是工频带较窄,带宽约为2%~20%左右,另一个缺点是不能对天馈设施加直流偏置,使某些应用受到限制。

三、SPD的基本电路

电涌保护器的电路根据不同需要,有不同的形式,其基本元器件就是上面介绍的几种,一个技术精通的防雷产品研究工作者,可设计出五花八门的电路,好似一盒积木可搭出不同的结构图案。研制出既有效又性能价格比好的产品,是防雷工作者的重任 发布日期:2011-3-14 文章作者:雷晟转载 查看次数:1705

简 介: 电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置。电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。

关键字:电涌保护器 防雷 信号传输

电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。

电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。

一、SPD的分类:

1.按工作原理分:

(1)开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。

(2)限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。

(3)分流型或扼流型

分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。

扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。

用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。

第二篇:避雷器避雷针的工作原理

避雷器避雷针的工作原理

避雷器能释放雷电或兼能释放电力系统操作过电压能量保护电工设备免受瞬时过电压危害又能截断续流不致引起系统接地短路的电器装置。避雷器通常接于带电导线与地之间与被保护设备并联。当过电压值达到规定的动作电压时避雷器立即动作流过电荷限制过电压幅值保护设备绝缘电压值正常后避雷器又迅速恢复原状以保证系统正常供电。避雷器避雷针原理避雷针分为被动/普通避雷针和主动/提前放电避雷针。提前放电避雷针主要由激发器从自然界的电场中吸收并贮存能量规范的避雷针安装使避雷针针尖与大地处于等电位状态。该避雷针保护范围比普通避雷针的保护范围更大。雷闪发生前激发器与针尖之间的电位差大致相当于雷云与大地之间的电位它们之间的电压降使避雷针尖端放电从而产生一个早期的上升先导改变雷云的向下先导的走向将建筑物的落雷点转移到自身上来并迅速、安全地将雷电安全地泄放到大地避免建筑物受到雷击。避雷器的特点及作用 避雷器的作用是用来保护电力系统中各种电器设备免受雷电过电压、操作过电压、工频暂态过电压冲击而损坏的一个电器。避雷器的类型主要有保护间隙、阀型避雷器和氧化锌避雷器。保护间隙主要用于限制大气过电压一般用于配电系统、线路和变电所进线段保护。阀型避雷器与氧化锌避雷器用于变电所和发电厂的保护在500KV及以下系统主要用于

限制大气过电压在超高压系统中还将用来限制内过电压或作内过电压的后备保护。开放式间隙避雷器 间隙避雷器的工作原理基于电弧放电技术当电极间的电压达到一定程度时击穿空气电弧在电极上进行爬电。优点放电能力强通流量大可以达到100KA漏电流小 热稳定性好 缺点残压高反映时间慢存在续流 工艺特点由于金属电极在放电时承受较大电流所以容易造成金属的升华使放电腔内形成金属镀膜影响避雷器的启动和正常使用。放电电极的生产主要还是集中在国外一些避雷器生产企业电极的主要成分是钨金属的合金。工程应用该种结构的避雷器主要应用在电源系统做B级避雷器使用。但由于避雷器自身的原因容易引起火灾避雷器动作后飞出脱离配电盘等事故。根据型号的不同适合与各种配电制式。工程安装时一定要考虑安装距离避免引起不必要的损失和事故。密闭式间隙避雷器 优点放电电流大 测试最大50KA实际测量值漏电流小 无续流 无电弧外泻 热稳定性好 缺点残压高反映时间慢 工艺特点石墨为主要材料产品内采用全铜包被解决了避雷器在放电时的散热问题不存在后续电流问题最大的特点是没有电弧的产生且残压与开放式间隙避雷器比较要低很多。工程应用该种避雷器应用在各种B、C类场合与开放式间隙比较不用考虑电弧问题。根据型号的不同该种产品适合与各种配电制式。登高电气有限公司为社会提供了最全面最先进的防雷产品登

高电气有限公司是从事避雷针、电源防雷器、视频监控防雷器、计算机网络防雷器、通信防雷器、防雷接地等避雷产品及防雷工程设计施工的高新技术防雷公司。公司产品经防雷检测部门检测合格并有保险等资料。登高电气有限公司技术工程部 张思保 2011年7月12日

第三篇:避雷器元件工作原理及设计原理

避雷器元件工作原理及设计原理

作者: 来源:

时间:2010-01-27 避雷器元件工作原理及设计原理

电涌保护器(Surge Protection Devices,简称SPD),也称浪涌保护器、过电压保护器,俗称避雷器、防雷器。

针对现在市场上出现了各种各样的防雷器,质量参差不齐,有一些甚至闻所未问(如:不用接地的避雷器,到现在为止,都弄不明白它的工作原理),因此,通过介绍避雷器的工作原理及组成,对客户甄别真假、优劣,有所帮助。

防雷器元件从响应特性看,有软硬两种。属于硬响应特性的放电元件有火花间隙(基于斩弧技术的角型火花隙和同轴放电火花隙)和气体放电管,属于软响应特性的放电元件有金属氧化物压敏电阻和瞬态抑制二极管。这些元件的区别在于放电能力、响应特性和残压,避雷器就是利用它们不同的优缺点,扬长避短,组合成各种避雷器,保护电路。推荐迪舰防雷器品质有保障安全系数高

一、火花间隙(Arc chopping)

1、放电间隙:原理是两个如牛角现状的电极,距离很短,用绝缘材料分开,当两个电极间的电场强度达到击穿强度时,电极之间形成电流通路。当雷电波来到的时候首先在间隙处击穿,使间隙的空气电离,形成短路,雷电流通过间隙流入大地,而此时间隙两端的电压很低,从而达到保护线路的目的。电场强度低于击穿间隙时,放电间隙型避雷器又恢复绝缘状态。常用于高压线路的避雷防护中。在低压系统,常用于电源的前级保护。

火花间隙型避雷器产品的优劣,在于制成电极的材料、间隙距离及绝缘材料。

优点:具有很强放电能力、通流量大,10/350μs脉冲波形能够疏导50KA的脉冲电流,用于8/20μs脉冲电流,可以大于100KA,很高的绝缘电阻以及很小的寄生电容,漏电流小。对正常工作的设备不会带来任何有害影响。缺点:残压高(2.5~3.5KV),反应时间长(≦100ns),动作电压精度较低,有工频续流,因此在保护电路中应串联一个熔断器,使得工频续流迅速被切断。

注:由于两只放电管分别装在一个回路的两根导线上,有时会不同时放电,使两导线之间出现电位差,为了使两根导线上的放电管能接近统一时间放电,减少两线之间的电位差,又研制了三级放电管。可以看作是由两只二级放电管合并在一起构成的。三级放电管中间的一级作为公共地线,另两级分别接在回路的两条导线上。

2、气体放电管(Gas discharge tube,GDT):是一种陶瓷或玻璃封装,管内再充以一定压力的惰性气体(如氩气),开关型的保护元件,有二电极和三电极两种结构。当电场强度达到击穿惰性气体强度时,就引起间隙放电,从而限制极间的电压。8/20μs脉冲电流能够疏导10KA。放电电压不稳定,当电压大于12V、电流电压100mA时,会产生后续电流。通常用于测量、控制、调节技术电路和电子数据处理传输电路中。

二、金属氧化物压敏电阻(Metal oxide varistor,MOV): 以氧化锌为主要成分的金属氧化物半导体非线性电阻,当加在电阻两端的电压小于压敏电压时,压敏电阻呈高阻状态,如果并联在电路上,该阀片呈断路状态;当加在压敏电阻两端的电压大于压敏电压时,压敏电阻就会击穿,呈现低阻值,甚至接近短路状态。压敏电阻这种被击穿状态是可以恢复的,当高于压敏电压的电压被撤销以后,它又恢复高阻状态。当电力线被雷击时,雷电波的高电压使压敏电阻击穿,雷电流通过压敏电阻流入大地,使电力线上的类电压被钳制在安全范围内。

氧化锌压敏电阻避雷器,现在市场上流通很多,我国在20世纪80年代末才大批生产,被认为目前最新型、技术最先进,会做专题详细介绍。现在我国的输电线路的避雷器,都采用氧化锌避雷器。

优点:开关电压范围宽:6V~1.5KV,反应速度快(25ns),残压低(可以达到终端设备的安全工作电压),通流量大(2KA/cm2),无续流,寿命长。缺点:容易老化,动作几次后,漏电流会增大,从而导致压敏电阻过热,最终导致老化失效。

电容较大,许多情况下不在高频、超高频系统中使用。该电容又与导线电容构成一个低通。该低通会造成信号的严重衰减。但在频率低于30KHZ时,这种衰减可以忽略。

三、瞬态抑制式二极管(Transient voltage suppressor,TVS):

1、二极放电管:有两种形式:一是齐纳型(为单向雪崩击穿),二是双向的硅压敏电阻。性能类似开关二极管等。在规定的反向电压作用下,两端电压大于门限电压时,其工作阻抗能立即降至很低的水平以允许大电流通过,并将两端电压钳制在很低的水平,从而有效地保护末端电子产品中的精密元件避免损坏。双向TVS可在正反两个方向吸收瞬时大脉动功率,并把电压钳制在预定水平。适用于交流电路。

优点:动作时间极快,达到皮秒级。限制电压低,击穿电压低,应用于各种电子领域。

缺点:电流负荷量小,电容相当高,一般在20pF以下,现在的陶瓷放电管能够做到3~5pF。

电子信息系统所需的浪涌保护系统一般采用两级或三级组成。采用气体放电管、压敏电阻和抑制二极管,并利用各种浪涌抑制器的特点,实现可靠保护。气体放电管一般放在线路输入端作为一级浪涌保护器件,承受大的浪涌电流,属于泄流型器件。二级保护器件采用压敏电阻,可在极短时间内(ns)将浪涌电压限制在较低的水平。对于高度灵敏的电子电路,可采用抑制二极管作为三级保护。在更短的时间内将浪涌电压限制在末端电子设备的绝缘水平以内。如图,当雷电等浪涌到来时,抑制二极管首先导通,把瞬间过电压精确地控制在一定的水平,如果浪涌电流较大,则压敏电阻启动并泄放一定的浪涌电流,这时压敏电阻两端的电压会有所升高,直至推动前级气体放电管放电,把大电流泄放到地。当三种器件在线路中的距离较远时,导通顺序会从气体放电管开始,依次导通。避雷器的工作,是从反应时间最快、设备的最末端开始的,然后逐级往前端启动的。推荐迪舰防雷器品质有保障安全系数高

中,单纯用气体放电管保护后端的设备会出现下列问题:导通时间过长,残压过大,有可能超过后端设备的耐压水平。放电后,会产生工频续流。为避免上述问题,采用另外一种电路(图三)。为了解决产生工频续流的问题,同时也避免压敏电阻因漏电流过大而发热自爆或老化,我们在气体放电管上串联一个压敏电阻,这样就可避免产生工频续流,又可以防止压敏电阻因漏电流而自爆、老化。但新的问题又产生了,这样避雷器的动作时间为气体放电管的导通时间和压敏电阻导通时间的总和。假设气体放电管的导通时间为100ns,压敏电阻的导通时间为25ns,则它们总的反应时间为125ns。为了减小反应时间,在电路中并入一个压敏电阻,这样可使总的反应时间为25ns。:当过电压出现时,抑制二极管作为动作最快的元件首先动作,线路设计为,在抑制二极管可能毁坏之前,放电电流即随着幅值的上升转换到前置的放电路径上,即充气式放电路上。

Us+△u≥Ug

Us:抑制二极管上的电压

△u:去耦感应线圈上的电压

Ug:气体放电管的动作电压

如果放电电流小于该值,则充气放电管不动作。采用这种线路不仅可以在低保护水平的条件下利用放电器动作迅速的优点,同时还可以达到很高的放电电容。这样就可以消除抑制二极管过载一级熔断器在出现电源续流时频繁切断电路的缺点。

频率较高的线路也可以采用欧姆式电阻作为去耦元件,与低电容桥接线路共同使用。

2、三极放电管:在两根的导线上,安装两个二极放电管,会出现电位差,因此就有三极放电管,多了一极做公共接地,可以减少时间差(0.15~0.2μs),及由此产生的横向雷电压幅值。市场上普通电源避雷器器件一般采用压敏电阻,用于一级、二级和三级电源。这种组合方式在距离大于5米时,导通时间从第一级开始逐级向后导通。

若第一级采用气体放电管,二级和三级采用压敏电阻,则必须满足第一级与第二级满足大于十米的距离,第二级与第三级满足大于5米的距离,这样才能保证前一级先动作。否则可能导致第一级不动作的现象,而二级和三级避雷器又没有那么大的通流量,导致避雷器无法切实保护设备。这点在工程设计中一定要引起注意。

四、避雷器的种类: 避雷器的种类基本上分三大类型:一是电源避雷器(安装时主要是并联方式,也串联方式),按电压的不同,分22V的单相电源避雷器和380V的三相电源避雷器。二是信号避雷器,多数用于计算机网络、通信系统上,安装的方式是串联。三是天馈线避雷器,是它适用于有发射机天线系统和接收无线电信号设备系统,连接方式也是串联。推荐迪舰防雷器品质有保障安全系数高

第四篇:减速机结构工作原理

一、减速机的结构:

减速机一般由箱体、轴系部件和附件三大部分组成(一)箱体

箱体是减速机中所有零件的基座,是支承和固定轴系部件、保证传动零件的正确相对位置并承受作用在减速机上的荷载的重要零件。箱体一般还兼作润滑油的油箱,具有充分润滑和很好的密封箱体零件的作用。

箱体大多做剖分式,由箱座和箱盖组成(取轴的中心线为剖分面)(二)附件

为保证减速机正常工作和具有完善的性能,减速机箱体上常设置某些必要的装置和零件,这些装置和零件及箱体上相应的局部结构统称为附件。

1、窥视孔和视孔盖(窥视孔:用于检查传动件的啮合情况和润滑情况等,并由该孔向箱内注入润滑油。)

2、通气器(减速机工作时,箱体内的温度和气压都很高,通气器能使热膨胀气体及时排出,保证箱体内外压平衡,以免润滑油沿箱体结合面、轴外伸处及其他缝隙渗漏出来。)

3、轴承端盖(用以固定轴承外圈及调整轴承间隙,承受轴向力)

4、定位销(箱盖和箱座需要两个圆锥销定位)

5、油面指示装置(指示减速机内油面的高度是否符合要求)

6、油塞(排油孔,更换减速机箱体内污油)

7、启盖螺钉(为了方便开启箱盖,对抗密封胶或水玻璃的粘结作用)

8、起吊装置(方便搬运)(三)轴系部件

分为:阶梯轴和齿轮轴两种 阶梯轴:常用

齿轮轴:当齿轮直径较小,齿轮与轴做成一体

二、减速机工作原理

减速机一般用于低转速大扭矩的传动设备,把电动机、内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,普通的减速机也会有几对相同原理齿轮达到理想的减速效果,大小齿轮的齿数之比,就是传动比。减速机是通过机械传动装置来降低电机(马达)转速,而变频器是通过改变交流电频率以达到电机(马达)速度调节的目的。通过变频器降低电机转速时,可以达到节能的目的。国内比较有名气的变频器生产企业有三晶、英威腾等等。

减速机是一种相对精密的机械,使用它的目的是降低转速,增加转矩。它的种类繁多,型号各异,不同种类有不同的用途。减速机的种类繁多,按照传动类型可分为齿轮减速器、蜗杆减速机和行星齿轮减速机;按照传动级数不同可分为单级和多级减速器;按照齿轮形状可分为圆柱齿轮减速器、圆锥齿轮减速器和圆锥-圆柱齿轮减速器;按照传动的布置形式又可分为展开式、分流式和同轴式减速机。

通用减速机和专用减速机设计选型方法的最大不同在于,前者适用于各个行业,但减速只能按一种特定的工况条件设计,故选用时用户需

根据各自的要求考虑不同的修正系数,工厂应该按实际选用的电动机功率(不是减速器的额定功率)打铭牌;后者按用户的专用条件设计,该考虑的系数,设计时一般已作考虑,选用时只要满足使用功率小于等于减速器的额定功率即可,方法相对简单。

第五篇:电磁式低压电器的结构和工作原理

第一章 常用低压电器

电器:电能的生产、输送、分配与应用起着控制、调节、检测和保护的作用。根据外界的信号和要求,自动或手动接通或断开电路,断续或连续地改变电路参数,以实现对电路或非电路对象的切换、控制、保护、检测、变换和调节用的电气设备。

定义:一种能控制电能的器件。

第一节 电磁式低压电器的结构和工作原理

● 低压电器:用于交流1200V、直流1500V以下电路的器件 ● 高压电器:用于交流1200V、直流1500V以上电路的电器。电力传动系统的组成:

1)主电路:由电动机、(接通、分断、控制电动机)接触器主触点等电器元件所组成。特点:电流大

2)控制电路:由接触器线圈、继电器等电器元件组成。

特点:电流小

●任务:按给定的指令,依照自动控制系统的规律和具体的工艺要求对主电路进行控制。

一、低压电器的分类

1、按使用的系统

1)低压配电电器

用于低压供电系统。电路出现故障(过载、短路、欠压、失压、断相、漏电等)起保护作用,断开故障电路。(动动稳定性、热稳定性)

例如:低压断路器、熔断器、刀开关和转换开关等。2)低压控制电器

用于电力传动控制系统。能分断过载电流,但不能分断短路电流。(通断能力、操

电器控制与PLC教案 作频率、电气和机械寿命等)

例如:接触器、继电器、控制器及主令电器等。

2、按操作方式

1)手动电器:刀开关、按钮、转换开关 2)自动电器:低压断路器、接触器、继电器

3、按工作原理

1)电磁式电器:电磁机构控制电器动作 2)非电量控制电器:非电磁式控制电器动作 ◆电磁式电器由感测和执行两部分组成。

感测部分(电磁机构):接受外界输入的信号,使执行部分动作,实现控制的目的。执行部分:触点系统。

二、电磁机构

电磁机构:通过电磁感应原理将电能转化成机械能。电磁机构输入的电信号:电压、电流

1、电磁机构的结构形式

电磁机构组成:线圈、铁心(亦称静铁心)和衔铁(亦称动铁心),1)E形电磁铁:多用于交流电磁系统。

2)螺管式电磁铁:多用作索引电磁机构和自动开关的操作电磁机构,少数过电流继电器也采用。

3)拍合式电磁铁:用于直流继电器和直流接触器,也用于交流继电器。

电器控制与PLC教案

2、电磁机构的线圈

线圈分类:电流线圈

电压线圈

1)电流线圈:串接在主电路,特点:扁铜条带或粗铜线绕制,匝数少,内阻小。讨论:a 衔铁动作与否取决于线圈中电流的大小。b 衔铁动作不改变线圈电流。

2)电压线圈:并联在电路

特点:细铜线绕制,匝数多,阻抗大,电流小,常用绝缘较好的电线绕制。讨论:衔铁动作与否取决于线圈的电压大小。从结构上看,线圈大抵可分为有骨架和无骨架两种。

▲交流电磁铁的线圈:有骨架式,线圈形状做成矮胖型(考虑到铁心中有磁滞损耗和涡流损耗,为便于散热之故)。

▲直流电磁机构的线圈:无骨架式,线圈形状做成瘦高型

3、电磁特性

电磁吸力的近似计算公式: 112FBS 2020S(1-1)

2式中:。当S为常数时,F与B成正比。1)吸力特性:电磁吸力与气隙的关系曲线。

说明:吸力特性与线圈励磁电流种类、线圈连接方式有关。

电器控制与PLC教案 ▲直流电压线圈的吸力特性

电流为常数(与磁路的气隙大小无关,取决于线圈的电阻),根据磁路定律

IN(1-2)

R∝

1mR

m

则有

吸力F与气隙 成反比,所以特性为二次曲线形状:

结论:a直流电压线圈在衔铁闭合前后吸力变化很大; b直流电压线圈中的电流在衔铁闭合前后不变化。▲交流电压线圈的吸力特性

交流电压线圈的阻抗主要决定与线圈的电抗,电阻可以忽略:

当频率、匝数和电压都为常数时,磁通为常数时: 为常数,结论:

a交流电压线圈在衔铁闭合前后吸力几乎不变化(如考虑漏磁通,随 增加)。

b交流电压线圈中的电流在衔铁闭合前后随气隙 的减小而减小。

电器控制与PLC教案 的减少略有综上:a衔铁动作与否取决于线圈两端的电压。

b 直流电磁机构的衔铁动作不改变线圈电流。C交流电磁机构的衔铁动作改变线圈电流。eg: U型: 6~7倍 E型: 10~15倍

说明:衔铁卡住不能吸合,或者频繁动作,交流电压线圈可能烧毁。

可靠性要求高,或频繁动作的控制系统采用直流电磁机构,而不采用交流电磁机构。2)反力特性

反力特性:指电磁机构转动部分的静阻力与气隙的关系曲线 电磁机构的反力:作用弹簧、摩擦阻力和衔铁的重量。电磁机构的反力特性如图所示:

4、反力特性与吸力特性的配合

F吸 略大于F反

电磁铁正常工作时衔铁在吸合的过程中,吸力必须大于反力,但也不能太大否则影响电器的机械寿命

5、短路环

1)单相交流电磁机构存在的问题

磁通是交变:衔铁产生强烈的振动和噪音,易使电器结构松散、寿命降低,同时使触头接触不良,易于熔焊与烧毁。2)短路环的作用

电器控制与PLC教案 短路环:磁通分相的作用,使合成后的吸力在任一时刻都大于反力,消除振动和噪声。

短路环的示意图:

三、触点系统

1、触点(执行元件)作用:分断和接通电路的作用。

2、触点接触形式:点接触、线接触和面接触。

点接触:小电流的触点 线接触:中等容量的触点 面接触:大容量的触点

(a)点接触(b)线接触(c)面接触

3、电接触(接触电阻)

电接触:动、静触点完全接触并有工作电流通过。

触点的接触过程:

最终闭合位置

(a)最终拉开位置(b)刚接触位置

(c)

电器控制与PLC教案

四、电弧的产生和灭弧装置

1、电弧的产生及危害 1)电弧的产生

触点由闭合到断开时,当电压超过10~20V和电流超过80~100mA,在拉开的两个触点之间将出现强烈的火花,实质是气体放点的现象,通常称之为“电弧”。

撞击电离 热电子发射 热电离 形成电弧 2)电弧的危害

a烧灼触点,降低电器的寿命和电器工作的可靠性。b使触点的分断时间延长,严重的会产生事故。

2、灭弧装置

灭弧措施:降低电弧温度和电场强度。

常用的灭弧方法有:拉长电弧、冷却电弧和电弧分段 常用的灭弧装置:

1)磁吹式灭弧装置(广泛应用于直流接触器中)

磁吹灭弧装置:利用电弧电流本身灭弧,电弧电流愈大,吹弧能力也越强。2)灭弧栅(常用作交流灭弧装置)

3)灭弧罩(用于交流和直流灭弧。)

采用一个用陶土和石棉水泥做的雨高温的灭弧罩,用以降温和隔弧。4)多断点灭弧

电器控制与PLC教案

下载避雷器SPD工作原理和结构word格式文档
下载避雷器SPD工作原理和结构.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    磷酸铁锂电池的结构和工作原理

    磷酸铁锂电池的结构和工作原理 一、磷酸铁锂 磷酸铁锂电极材料主要用于各种锂离子电池,自1996年日本的NTT首次揭露AyMPO4(A为碱金属,M为CoFe两者之组合:LiFeCOPO4)的橄榄石结......

    扫描电镜的基本结构和工作原理(精选)

    扫描电镜的基本结构和工作原理 扫描电子显微镜利用电子枪发射的电子束,经过几级电磁透镜缩小后,电子束到达样品,激发样品中的二次电子,二次电子被探测器接收,通过信号处理并调制......

    钻井泥浆泵结构工作原理

    长沙多级泵厂家宏力泵业整理http://www.honglipump.net 钻井泥浆泵结构工作原理 泥浆泵原理 泥浆泵是在钻探过程中,向钻孔输送泥浆或水等冲洗液的机械。泥浆泵是钻探机械设......

    《离合器结构和工作原理》说课稿[小编整理]

    《离合器的结构和工作原理》说课稿 尊敬的各位评委、各位: 大家下午好! 我是陆丰市第二职业技术学校汽修专业的郑泽武! 今天我说课的内容是《离合器的结构和工作原理》。接下来......

    计量泵的结构及工作原理

    计量泵的结构及工作原理 计量泵由动力端和液力端两部份组成。动力端通过曲柄连杆机构促使柱塞作往复运动,通过N形轴调节机构来改变行程流量大小;液力端通过吸入、排出阀组起到......

    计量泵的结构及工作原理

    计量泵的结构及工作原理: 众所周知计量泵由动力端和液力端两部份组成。动力端通过曲柄连杆机构促使柱塞作往复运动,通过N形轴调节机构来改变行程流量大小;液力端通过吸入、排出......

    电容器的工作原理及结构

    电容器工作原理这得从电容器的结构上说起。最简单的电容器是由两端的极板和中间的绝缘电介质(包括空气)构成的。通电后,极板带电,形成电压(电势差),但是由于中间的绝缘物质,所以整个......

    液压打包机结构与工作原理

    液压打包机结构与工作原理: 液压打包机包括支架,支架带有底板和前后侧挡板,支架上安装有千斤顶,千斤顶带有活塞杆,活塞杆右端连接有竖直的推料板,推料板右侧面连接有推料板条,相邻......