高中数学第十章-排列组合范文

时间:2019-05-15 03:22:12下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学第十章-排列组合范文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学第十章-排列组合范文》。

第一篇:高中数学第十章-排列组合范文

高三数学总复习................................................................高考复习科目:数学

高中数学总复习

(九)复习内容:高中数学第十章-排列组合 复习范围:第十章 编写时间:2004-7 修订时间:总计第三次 2005-4

一、两个原理.1.乘法原理、加法原理.2.可以有重复元素的排列........从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m·m·… m = mn..例如:n件物品放入m个抽屉中,不限放法,共有多少种不同放法?

(解:m种)

二、排列.1.⑪对排列定义的理解.定义:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m......个元素的一个排列.⑫相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑬排列数.从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列.从n

m个不同元素中取出m个元素的一个排列数,用符号An表示.n⑭排列数公式:

Amn(n1)(nm1)n!(mn,n,mN)

(nm)!注意:nn!(n1)!n!

规定0!= 1

mmmm1mm1mm10

An

规定CnCnAnnAnn1 1AnAmCnAnmAn12.含有可重元素的排列问题.......对含有相同元素求排列个数的方法是:设重集S有k个不同元素a1,a2,…...an其中限重复数为n1、n2……nk,且n = n1+n2+……nk , 则S的排列个数等于nn!.n1!n2!...nk!例如:已知数字3、2、2,求其排列个数n数n3!1.3!

三、组合.(12)!3又例如:数字5、5、5、求其排列个数?其排列个1!2!1.⑪组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.高中数学高考总复习

高三数学总复习九—排列组合 — 1 —

m⑫组合数公式:CmAnn(n1)(nm1)nmAmm!Cmnn!

m!(nm)!nmm1mm⑬两个公式:①CmnCn;

②CnCnCn1

①从n个不同元素中取出m个元素后就剩下n-m个元素,因此从n个不同元素中取出 n-m个元素的方法是一一对应的,因此是一样多的就是说从n个不同元素中取出n-m个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n个白球一个红球,任取m个不同小球其不同选法,分二类,一类是1m1m含红球选法有CmnC11Cn一类是不含红球的选法有Cn)

②根据组合定义与加法原理得;在确定n+1个不同元素中取m个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n个元素中再取m-1个元素,所以有C一元素,则需从剩余n个元素中取出m个元素,所以共有C⑭排列与组合的联系与区别.联系:都是从n个不同元素中取出m个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.⑮①几个常用组合数公式

012n CnCnCnnn2m1n,如果不取这

mn1m种,依分类原理有CmnCmnCn1.024135CnCnCnCnCnCn2n1mmmm1CmnCm1Cm2CmnCmn1kCnCknk1n1

111CkCknn1k1n1②常用的证明组合等式方法例.i.裂项求和法.如:123n1n1111)(利用2!3!4!(n1)!(n1)!n!(n1)!n!ii.导数法.iii.数学归纳法.iv.倒序求和法.m1m3333v.递推法(即用CmCnCn4nCnCn1递推)如:C3C4C51.02122nvi.构造二项式.如:(Cn)(Cn)(Cnn)C2n证明:这里构造二项式(x1)n(1x)n(1x)2n其中x的系数,左边为

01n12n2n00212n2,而右边C2n CnCnnCnCnCnCnCnCn(Cn)(Cn)(Cn)nn

四、排列、组合综合.1.I.排列、组合问题几大解题方法及题型: ①直接法.②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n个不同元素排成一列,要求其中某m(mn)个元素必相邻的排列有Anm1Am个.其中Anm1是一个“整体排列”,而Am则是“局部排列”.22又例如①有n个不同座位,A、B两个不能相邻,则有排列法种数为An.An11A2nm1mnm1m高中数学高考总复习

高三数学总复习九—排列组合 — 2 —

12.②有n件不同商品,若其中A、B排在一起有Ann1A221.③有n件不同商品,若其中有二件要排在一起有AnAnn1注:①③区别在于①是确定的座位,有A2种;而③的商品地位相同,是从n件不同商品任取的2个,有不2确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.mm例如:n个元素全排列,其中m个元素互不相邻,不同的排法种数为多少?An(插空法),当n nmAnm1– m+1≥m, 即m≤n1时有意义.2⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n个元素进行全排列有Ann种,m(mn)个元素的全排列有Amm种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n个元素排成一列,其中m个元素次序一定,共有

AnnAmm种排列方法.例如:n个元素全排列,其中m个元素顺序不变,共有多少种不同的排法? 解法一:(逐步插空法)(m+1)(m+2)…n = n!/ m!;解法二:(比例分配法)

mAnn/Am.⑦平均法:若把kn个不同元素平均分成k组,每组n个,共有

nnCknC(k1)nnCnAkk.C2例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有43(平均分组就用不着管组

2!与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少?(P82C18C210C20/2!)

注意:分组与插空综合.例如:n个元素全排列,其中某m个元素互不相邻且顺序不变,共有多少种排法?mmm有An,当n – m+1 ≥m, 即m≤n1时有意义.nmAnm1/Am2⑧隔板法:常用于解正整数解组数的问题.例如:x1x2x3x412的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为x1,x2,x3,x4显然x1x2x3x412,故(x1,x2,x3,x4)是方程的一组解.反之,方程的任何一组解(y1,y2,y3,y4),对应着惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应.即方程的3解的组数等于插隔板的方法数C11.x1x2x3x4注意:若为非负数解的x个数,即用a1,a2,...an中ai等于xi1,有x1x2x3...xnAa11a21...an1A,进而转化为求a的正整数解的个数为CAn.⑨定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r高中数学高考总复习

高三数学总复习九—排列组合 — 3 —

n1r个指定位置则有ArrAknr.例如:从n个不同元素中,每次取出m个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?

m1m1m1或m,1;固定在某一位置上:不在某一位置上:(一类是不取出特殊元素a,有AnAnAmAm1Am1An1nAn11n1一类是取特殊元素a,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)

⑩指定元素排列组合问题.i.从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内。先C后Akrkrkr策略,排列CrrCnrAk;组合CrCnr.ii.从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都不包含在内。先C后Akk策略,排列CnrAk;组合Cnkr.iii 从n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个

ksksks元素中的s个元素。先C后A策略,排列CrsCnrAk;组合CrCnr.II.排列组合常见解题策略:

①特殊元素优先安排策略;②合理分类与准确分步策略;③排列、组合混合问题先选后排的策略(处理排列组合综合性问题一般是先选元素,后排列);④正难则反,等价转化策略;⑤相邻问题插空处理策略; ⑥不相邻问题插空处理策略;⑦定序问题除法处理策略;⑧分排问题直排处理的策略;⑨“小集团”排列问题中先整体后局部的策略;⑩构造模型的策略.2.组合问题中分组问题和分配问题.①均匀不编号分组:将n个不同元素分成不编号的m组,假定其中r组元素个数相等,不管是否分尽,其分法种数为A/Ar(其中A为非均匀不编号分组中分法数).如果再有K组均匀分组应再除以Ak.rk244例:10人分成三组,各组元素个数为2、4、4,其分法种数为C10.若分成六组,各组人C8C4/A22***数分别为1、1、2、2、2、2,其分法种数为C10 C9C8C6C4C2/A22A4②非均匀编号分组: n个不同元素分组,各组元素数目均不相等,且考虑各组间的顺序,其分法种数为AAm m233例:10人分成三组,各组人数分别为2、3、5,去参加不同的劳动,其安排方法为:C10种.C8C55A3234若从10人中选9人分成三组,人数分别为2、3、4,参加不同的劳动,则安排方法有C10种 C8C5A33③均匀编号分组:n个不同元素分成m组,其中r组元素个数相同且考虑各组间的顺序,其分法种数为m.A/ArrAm例:10人分成三组,人数分别为2、4、4,参加三种不同劳动,分法种数为C10C8C4A3

32244A2④非均匀不编号分组:将n个不同元素分成不编号的m组,每组元素数目均不相同,且不考虑各组间顺序,k不管是否分尽,其分法种数为ACn1Cn-2m1…Cn-(m1m2...mk-1)

mmm235例:10人分成三组,每组人数分别为2、3、5,其分法种数为C10C8C52520若从10人中选出6人分成三

123组,各组人数分别为1、2、3,其分法种数为C10C9C712600.高中数学高考总复习

高三数学总复习九—排列组合 — 4 —

五、二项式定理.0n01n1rnrrn0n1.⑪二项式定理:(ab)nCnabCnabCnabCnab.展开式具有以下特点: ① 项数:共有n1项;

012r② 系数:依次为组合数Cn,Cn,Cn,,Cn,,Cnn;

③ 每一项的次数是一样的,即为n次,展开式依a的降幕排列,b的升幕排列展开.⑫二项展开式的通项.rnrr(ab)n展开式中的第r1项为:Tr1Cnab(0rn,rZ).⑬二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数最大......

nI.当n是偶数时,中间项是第1项,它的二项式系数C2n最大;

2n1n1II.当n是奇数时,中间项为两项,即第项和第1项,它们的二项式系数C22③系数和:

01nCnCnCnn202413CnCnCnCnCn2n1n1n12C2最大.nnn

附:一般来说(axby)n(a,b为常数)在求系数最大的项或最小的项时均可直接根据性质二求解.当...........

AkAk1,AkAk1或(Ak为Tk1的系数或系数的绝对值)的a1或b1时,一般采用解不等式组AAAAkk1kk1办法来求解.pqr⑭如何来求(abc)n展开式中含abc的系数呢?其中p,q,rN,且pqrn把

r(abc)n[(ab)c]n视为二项式,先找出含有Cr的项Cn(ab)nrCr,另一方面在(ab)nr中qpqrrqpqrqnrqqqpq含有b的项为Cnr故在(abc)n中含abc的项为CnCnrabc.其系数为abCnrab,rCnCnqr(nr)!n!n!pqrCnCnpCr.r!(nr)!q!(nrq)!r!q!p!2.近似计算的处理方法.当a的绝对值与1相比很小且n不大时,常用近似公式(1a)1na,因为这时展开式的后面部分2233nnCnaCnaCna很小,可以忽略不计。类似地,有(1a)n1na但使用这两个公式时应注意a

n的条件,以及对计算精确度的要求.高中数学高考总复习

高三数学总复习九—排列组合 — 5 —

高中数学高考总复习— 6 —

高三数学总复习九—排列组合

第二篇:高中数学排列组合教学设计

高中数学《排列组合》教学设计

【教学目标】 1.知识目标

(1)能够熟练判断所研究问题是否是排列或组合问题;(2)进一步熟悉排列数、组合数公式的计算技能;(3)熟练应用排列组合问题常见解题方法;

(4)进一步增强分析、解决排列、组合应用题的能力。2.能力目标

认清题目的本质,排除非数学因素的干扰,抓住问题的主要矛盾,注重不同题目之间解题方法的联系,化解矛盾,并要注重解题方法的归纳与总结,真正提高分析、解决问题的能力。3.德育目标

(1)用联系的观点看问题;

(2)认识事物在一定条件下的相互转化;(3)解决问题能抓住问题的本质。【教学重点】:排列数与组合数公式的应用 【教学难点】:解题思路的分析

【教学策略】:以学生自主探究为主,教师在必要时给予指导和提示,学生的学习活动采用自主探索和小组协作讨论相结合的方法。

【媒体选用】:学生在计算机网络教室通过专题学习网站,利用网络资源(如在线测度等)进行自主探索和研究。

【教学过程】

一、知识要点精析

(一)基本原理

1.分类计数原理 2.分步计数原理

3.两个原理的区别在于一个与分类有关,一个与分步有关即“联斥性”:(1)对于加法原理有以下三点: ①“斥”——互斥独立事件;

②模式:“做事”——“分类”——“加法”

③关键:抓住分类的标准进行恰当地分类,要使分类既不遗漏也不重复。(2)对于乘法原理有以下三点: ①“联”——相依事件;

②模式:“做事”——“分步”——“乘法”

③关键:抓住特点进行分步,要正确设计分步的程序使每步之间既互相联系又彼此独立。

(二)排列

1.排列定义 2.排列数定义 3. 排列数公式

(三)组合

1.组合定义 2.组合数定义 3.组合数公式 4.组合数的两个性质

(四)排列与组合的应用

1.排列的应用问题

(1)无限制条件的简单排列应用问题,可直接用公式求解。

(2)有限制条件的排列问题,可根据具体的限制条件,用“直接法”或“间接法”求解。2.组合的应用问题

(1)无限制条件的简单组合应用问题,可直接用公式求解。

(2)有限制条件的组合问题,可根据具体的限制条件,用“直接法”或“间接法”求解。3.排列、组合的综合问题

排列组合的综合问题,主要是排列组合的混合题,解题的思路是先解决组合问题,然后再讨论排列问题。

在解决排列与组合的应用题时应注意以下几点:(1)限制条件的排列问题常见命题形式: “在”与“不在” “相邻”与“不相邻”

在解决问题时要掌握基本的解题思想和方法:

①“相邻”问题在解题时常用“捆绑法”,可以把两个或两个以上的元素当做一个元素来看,这是处理相邻最常用的方法。

②“不相邻”问题在解题时最常用的是“插空法”。

③“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置。

④元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后利用规定顺序的实情求出结果。

(2)限制条件的组合问题常见命题形式: “含”与“不含” “至少”与“至多”

在解题时常用的方法有“直接法”或“间接法”。

(3)在处理排列组合综合题时,通过分析条件按元素的性质分类,做到不重复,不遗漏按事件的发生过程分类、分步,正确地交替使用两个原理,这是解决排列问题的最基本,也是最重要的思想方法。

4、解题步骤:(1)认真审题(2)列式并计算(3)作答

二、学习过程 题型一:排列应用题

9名同学站成一排:(分别用A,B,C等作代号)(1)如果A必站在中间,有多少种排法?(答案:)(2)如果A不能站在中间,有多少种排法?(答案:)

(3)如果A必须站在排头,B必须站在排尾,有多少种排法?(答案:)(4)如果A不能在排头,B不能在排尾,有多少种排法?(答案:)(5)如果A,B必须排在两端,有多少种排法?(答案:)(6)如果A,B不能排在两端,有多少种排法?(答案:)(7)如果A,B必须在一起,有多少种排法?(答案:)(8)如果A,B必须不在一起,有多少种排法?(答案:)(9)如果A,B,C顺序固定,有多少种排法?(答案:)题型二:组合应用题

若从这9名同学中选出3名出席一会议

(10)若A,B两名必在其内,有多少种选法?(答案:)(11)若A,B两名都不在内,有多少种选法?(答案:)(12)若A,B两名有且只有一名在内,有多少种选法?(答案:)(13)若A,B两名中至少有一名在内,有多少种选法?(答案: 或)(14)若A,B两名中至多有一名在内,有多少种选法?(答案: 或)题型三:排列与组合综合应用题

若9名同学中男生5名,女生4名

(15)若选3名男生,2名女生排成一排,有多少种排法?(答案:)(16)若选3名男生2名女生排成一排且有一男生必须在排头,有多少种排法?(答案:)

(17)若选3名男生2名女生排成一排且某一男生必须在排头,有多少种排法?(答案:)

(18)若男女生相间,有多少种排法?(答案:)题型四:分组问题

6本不同的书,按照以下要求处理,各有几种分法?

(19)一堆一本,一堆两本,一堆三本

(答案:)(20)甲得一本,乙得两本,丙得三本

(答案:)(21)一人得一本,一人得两本,一人得三本

(答案:)(22)平均分给甲、乙、丙三人

(答案:)(23)平均分成三堆

(答案:)

(24)分成四堆,一堆三本,其余各一本

(答案:)(25)分给三人每人至少一本。(答案: + +)题型五:全能与专项

车间有11名工人,其中5名男工是钳工,4名女工是车工,另外两名老师傅既能当车工又能当钳工现在要在这11名工人里选派4名钳工,4名车工修理一台机床,有多少种选派方法? 题型六:染色问题

(26)梯形的两条对角线把梯形分成四部分,用五种不同颜色给这四部分涂不同颜色,且相邻的区域不同色,问有()种不同的涂色方法?

(答案:260)

(27)某城市在中心广场建造一个花圃,花圃分为6个部分(如图)。现在栽种4种不同颜色的花,每部分栽种一种且相 邻部分不能栽种同样颜色的花,不同的栽种方法有

种。分析:先排1、2、3排法 种排法;再排4,若4与2同色,5有 种排法,6有1种排法;若4与2不同色,4只有1种排法; 若5与2同色,6有 种排法;若5与3同色,6有1种排法 所以共有(+ +1)=120种 题型七:编号问题

(28)四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有多少种?

(答案:144)(29)将数字1,2,3,4填在标号为1,2,3,4的四个方格里,每格填上一个数字且每个方格的标号与所填的数字均不相同的填法有多少种?(答案:9)

题型八:几何问题

(30):(Ⅰ)四面体的一个顶点为A,从其它顶点和各棱的中点中取3个点,使它们和点A在同一个平面上,有多少种不同的取法?

(Ⅱ)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,有多少种不同的取法?

解:(1)(直接法)如图,含顶点A的四面体的3个面上,除点A外都有 5个点,从中取出3点必与点A共面共有 种取法,含顶点A的 三条棱上各有三个点,它们与所对的棱的中点共面,共有3种取法。根据分类计数原理,与顶点A共面三点的取法有 +3=33(种)

(2)(间接法)如图,从10个顶点中取4个点的取法有 种,除去4点共面 的取法种数可以得到结果。从四面体同一个面上的6个点取出4点必定共面。有 =60种,四面体的每一条棱上3点与相对棱中点共面,共有6种共面情况,从6条棱的中点中取4个点时有3种共面情形(对棱中点连线两两相交且互相平分)故4点不共面的取法为

-(60+6+3)=141 题型九:关于数的整除个数的性质:

①被2整除的:个位数为偶数;

②被3整除的:各个位数上的数字之和被3整除;

③被6整除的:3的倍数且为偶数;

④被4整除的:末两位数能被4整除;

⑤被8整除的:末三位数能被8整除;

⑥25的倍数:末两位数为25的倍数;

⑦5的倍数:个位数是0,5;

⑧9的倍数:各个位数上的数字之和为9的倍数。

(31):用0,1,2,3,4,5组成无重复数字的五位数,其中5的倍数有多少个?(答案:216)

题型十:隔板法:(适用于“同元”问题)

(32):把12本相同的笔记本全部分给7位同学,每人至少一本,有多少种分法? 分析:把12本笔记本排成一行,在它们之间有11个空当(不含两端)插上6块板将本子分成7份,对应着7名同学,不同的插法就是不同的分法,故有 种。

三、在线测试题

1.以一个正方形的顶点为顶点的四面体共有(D)个(A)70(B)64(C)60(D)58 2.3名医生和6名护士被分配到3所所为学生体检,每校分配1名医生和2名护士,不同的分配方法共有(D)

(A)90种(B)180种(C)270种(D)540种

3.将组成篮球队的12个名额分配给7所学校,每校至少1个名额,则不同的名额分配方法共有(A)

(A)(B)(C)(D)

4.5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为(B)(A)480(B)240(C)120(D)96 5.编号为1,2,3,4,5的五个人分别去坐在编号为1,2,3,4,5的座位上,至多有两个号码一致的坐法种数为(C)(A)90(B)105(C)109(D)100 6.如右图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现在4种颜色可供选择,则不同的着色方法共有(B)种(用数字作答)(A)48(B)72(C)120(D)36 7.若把英语“error”中字母的拼写顺序写错了,则可能出现的错误的种数是(A)。(A)19(B)20(C)119(D)60 8.某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分,一球队打完15场,积分33分,若不考虑顺序,该队胜、负、平的情况有(D)

(A)6 种

(B)5种

(C)4种

(D)3种

四、课后练习

1.10个不加区别的小球放入编号为1,2,3的三个盒子中,要求每个盒内的球数不小于盒子的编数,问有 种不同的放法?

2.坐在一排9个椅子上,相邻两人之间至少有2个空椅子,则不同的坐法的种数是 3.如图A,B,C,D为海上的四个小岛,要建三座桥,将这四个岛连接起来,不同的建桥方案共有 种。

4.面直角坐标系中,X轴正半轴上有5个点,Y轴正半轴有3个点,将X轴上这5个点或Y轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有 个。

5.某邮局现只有邮票0.6元,0.8元,1.1元的三种面值邮票,现有邮资为7.5元的邮件一件,为使粘贴的邮票张数最小,且邮资恰为7.5元,则至少要购买 张邮票。

6.(1)从1,2,…,30这前30个自然数中,每次取出不同的三个数,使这三个 数的和是3的倍数的取法有多少种?

(2)用0,1,2,3,4,5这六个数字,可以组成多少个能被3整除的四位数。

(3)在1,2,3,…,100这100个自然数中,每次取出三个数,使它们构成一个等差数列,问这样的等差数列共有多少个?

(4)1!+2!+3!+…+100!的个位数字是

7.5个身高均不等的学生站成一排合影,若高个子站中间,从中间到两边一个比一个矮,则这样的排法种数共有()

(A)6种(B)8种(C)10种(D)12种

8.某产品中有4只次品,6只正品(每只产品均可区别),每次取一只测试,直到4只次品全部测出为止,则第五次测试发现最后一只次品的可能情况共有多少种?

《排列和组合的综合应用》教师小结

数学教师在传统教学环境下也许会遭遇诸如以下的困难: ——我怎样向学生提供更多的相关的学习资料? ——我如何有效地进行课堂检测并及时反馈?

——我怎样让每个学生都参与讨论并且使讨论的结果都呈现出来?

这种在教学资源、教学检测、教学组织上所体现出来的局限,不仅在传统教学环境下难以改变,即使在多媒体辅助教学下也是捉襟见肘。它不仅影响了数学教学效率的提高,更是阻碍了数学教改的进程。幸而,计算机技术的发展已经到了网络时代,基于Web的网络教学给我们的数学教学带来了革命的曙光。鉴此认真分析教材特点,学生特点开了《排列和组合的综合应用》这堂网络课,现对此进行课后总结:

《排列和组合的综合应用》这堂网络课,教学重点是几种常见命题的形式的解题思路及有关应用。首先,通过排列和组合有关知识的学习,对排列和组合有一个整体上的认识,给学生打下了很好的基础。其次,在教学中,本着以学生为本的原则,让学生自己动手参与实践,使之获取知识。在传统教学过程中,学生主要依靠老师,自主探索的能力不强,因此在本节课学习中,教师在课堂上适时抛出问题,使学生有的放矢,有针对性,知道自己下一步应该做什么,同时组织学生以小组进行讨论学习,防止出现学生纯粹浏览网页这种现象。在强大的网络环境下,让学生探讨排列和组合的区别与联系,自主发现结论,以人机交互的方式,使个性化学习成为可能,体现了学科教学与教育技术的整合。第三、针对数学学科的特点,在学生自主探索发现结论后,还需在理论上给予支持。因此,对各种常见的类型,教师在课堂上分别给予小结,目的是让学生在今后的自主学习中,若遇到同样的问题,有能力自己解决。从而让学生逐步熟悉、形成较为完整的一套自主学习的方法。

在上课的过程中,充分体现出计算机的交互和便捷的特点,学生可以根据需要,在老师的引导下,选择自己学习的进度和内容,去自主的学习和探索。通过实际操作,帮助理解和掌握本节课重点内容。在上课过程中,学生积极思考,相互协作讨论,踊跃回答问题,气氛活跃,教学效果好。在学生课后的反馈中,总体的反映都觉得各自获益匪浅,从中学到了不少的东西,切实掌握了排列和组合的有关知识。

当然,本节课还有许多需要改进的地方,如课堂上安排节奏比较快,例题,练习留给学生探索,动手的时间还可以再多一些;另外由于学生电脑的水平以及数学学科的特点,所以许多学生不能很熟练地操作电脑,许多数学符号,公式无法在讨论区中体现。

总之,网络探究的最大好处是学生能够在网络中找到课堂教学中体验过和未体验过的感性知识,提高学生求知欲,增强学习的自主性,使学生的个性在学习中得以充分张扬。而探究过程中的相互交流不仅可扩大知识的摄入量,更可培养学生形成一种在交流中学习成长的意识。因此在网络教学这领域中,今后还有很大的学习空间,做为一名教师,要适应时代的需要,改善自己平时的传统教学思维,大胆创新,努力学习,不断地探索,不断反思。树立现代教育观念,不断学习现代化技术,完善自己,提高素质,才能担负起祖国赋于我们肩上的重任。

第三篇:高中数学 排列组合与二项式定理

排列组合与二项式定理

1.(西城区)在(2x2

A.-5 1x)的展开式常数项是 6 D.60()B.15 C.-60

2.(东城区)8名运动员参加男子100米的决赛.已知运动场有从内到外编号依次为1,2,3,4,5,6,7,8的八条跑道,若指定的3名运动员所在的跑道编号必须是三个连续

数字(如:4,5,6),则参加比赛的这8名运动员安排跑道的方式共有()A.360种 B.4320种 C.720种 D.2160种

3.(海淀区)从3名男生和3名女生中,选出2名女生1名男生分别担任语文、数学、英语的课代表,则选派方案共有()

A.18种B.36种C.54种D.72种

4.(崇文区)某运动队从5名男运动员和6名女运动员中选出两名男运动员和两名女运动员举行乒乓球混合双打比赛,对阵双方各有一名男运动员和一名女运动员,则不同的选法共有

A.50种B.150种C.300种 D.600种()

5.(丰台区)把编号为1、2、3、4的4位运动员排在编号为1、2、3、4的4条跑道中,要求有且只有两位运动员的编号与其所在跑道的编号相同,共有不同的排法种数是()

A. 3B.6C.12D.2

46.(朝阳区)从4位男教师和3位女教师中选出3位教师,派往郊区3所学校支教,每校1人.要求这3位教师中男、女教师都要有,则不同的选派方案共有()

A.210种

x

6B.186种 7C.180种 D.90种 7.(东城区)已知(x)展开式的第4项的值等于5,则x= 48.(海淀区)在(ax1)的展开式中x的系数是240,则正实数a9.(宣武区)设二项式(33x1

x)的展开式的各项系数的和为P,所有二项式系数的和为S,n

若P+S=272,则n=,其展开式中的常数项为.210.(崇文区)若(x1

x2)展开式中只有第四项的系数最大,则,展开式中的第五n

项为

11.(丰台区).在(x1

a)的展开式中,含x与x项的系数相等,则a的值是 754

12.(朝阳区)若(1-ax)6的展开式中x4的系数是240,则实数a的值是

13.(宣武区)现有A、B、C、D、E、F、共6位同学站成一排照像,要求同学A、B相邻,C、D不相邻,这样的排队照像方式有

DBCCBC7.1715x411.53;12.±213.144

第四篇:高中数学-公式-排列组合与概率

排列组合、二项式定理

1、分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+……+mn.分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步又mn种不同的方法,那么完成这件事共有N=m1Xm2X……Xmn。

2、排列数公式是:An=n(n1)(nm1)=

nmn!(m≤n,m、n∈N*);(nm)!当m=n时,为全排列An=n(n-1)(n-2)…3.2.1。

Cn排列数与组合数的关系是:Anm!

组合数公式是:C组合数性质:Cmn=mmmAnn!n!n(n1)(nm1)m=(m≤n);Cnm; m!(nm)!Amm!(nm)!12mm

n=Cnm

n

r

r1

n,CC1; Crr200nnnmn+Cm1=nCm; n1 CC

式:Tr1CnarnrrrCCCn1n1rnr0r1n1; n.n!=(n+1)!-n!,即Cnrn=2;rCn=nCn1; nrr1nn1nnAnAnA1n。

3、二项式定理:(ab)CnaCna2n22rnrrnnbCnabCnabCnb二项展开式的通项公br(r0,1,2,n)

(1)二项式性质:与首末两端等距离的二项式系数相等;

对于(ab)CnaCna

n

2nn0n1n12n22rnrrnnbCnabCnabCnb的二次项系数:当n是偶数时,nn1n1中间的一项C(第+1项)取得最大值;当n是奇数时,中间的两项Cn2(第项)、Cn2(第+1222

项)相等,且同时取得最大值。

012nCnCnCn2n;且奇数项的二项式(ab)n的展开式的各个二项式系数的和等于2n,即Cnn1n1

系数的和等于偶数项的二项式系数的和,即CnCnCnCn2

7.F(x)=(ax+b)n展开式的各项系数和为f(1);奇数项系数和为0213n1。1[f(1)f(1)];偶数项的系数和为2

1[f(1)f(1)]。2

第五篇:高中数学排列组合的复习教学设计

高中数学《排列组合的复习》教学设计

稿件提供人:北辰区高中数学教研员 姜德华

教学目标 1.知识目标

(1)能够熟练判断所研究问题是否是排列或组合问题;(2)进一步熟悉排列数、组合数公式的计算技能;(3)熟练应用排列组合问题常见解题方法;

(4)进一步增强分析、解决排列、组合应用题的能力。2.能力目标

认清题目的本质,排除非数学因素的干扰,抓住问题的主要矛盾,注重不同题目之间解题方法的联系,化解矛盾,并要注重解题方法的归纳与总结,真正提高分析、解决问题的能力。3.德育目标

(1)用联系的观点看问题;

(2)认识事物在一定条件下的相互转化;(3)解决问题能抓住问题的本质。教学重点:排列数与组合数公式的应用 教学难点:解题思路的分析

教学策略:以学生自主探究为主,教师在必要时给予指导和提示,学生的学习活动采用自主探索和小组协作讨论相结合的方法。

媒体选用:学生在计算机网络教室通过专题学习网站,利用网络资源(如在线测度等)进行自主探索和研究。教学过程

一、知识要点精析

(一)基本原理

1.分类计数原理:做一件事,完成它可以有 类办法,在第一类办法中有 种不同的方法,在第二类办法中有 种不同的方法,„„,在第 类办法中有 种不同的办法,那么完成这件事共有: „ 种不同的方法。

2.分步计数原理:做一件事,完成它需要分成 个步骤,做第一步有 种不同的方法,做第二步有 种不同的方法,„„,做第 步有 种不同的办法,那么完成这件事共有: „ 种不同的方法。

3.两个原理的区别在于一个与分类有关,一个与分步有关即“联斥性”:(1)对于加法原理有以下三点: ①“斥”——互斥独立事件;

②模式:“做事”——“分类”——“加法”

③关键:抓住分类的标准进行恰当地分类,要使分类既不遗漏也不重复。(2)对于乘法原理有以下三点: ①“联”——相依事件;

②模式:“做事”——“分步”——“乘法”

③关键:抓住特点进行分步,要正确设计分步的程序使每步之间既互相联系又彼此独立。

(二)排列

1.排列定义:一般地说从 个不同元素中,任取 个元素,按照一定的顺序排成一列,叫做从 个不同元素中,任取 个元素的一个排列。特别地当 时,叫做 个不同元素的一个全排列。2.排列数定义:从 个不同元素中取出 个元素的所有排列的个数,叫做从 个不同元素中取出 个元素的排列数,用符号 表示。3. 排列数公式:(1)„,特别地

(2)且规定

(三)组合

1.组合定义:一般地说从 个不同元素中,任取 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合。

2.组合数定义:从 个不同元素中取出 个元素的所有组合的个数,叫做从 个不同元素中取出 个元素的组合数,用符号 表示。3. 组合数公式:(1)

(2)

4.组合数的两个性质:(1)规定(2)

(四)排列与组合的应用 1.排列的应用问题

(1)无限制条件的简单排列应用问题,可直接用公式求解。

(2)有限制条件的排列问题,可根据具体的限制条件,用“直接法”或“间接法”求解。2.组合的应用问题(1)无限制条件的简单组合应用问题,可直接用公式求解。

(2)有限制条件的组合问题,可根据具体的限制条件,用“直接法”或“间接法”求解。3.排列、组合的综合问题

排列组合的综合问题,主要是排列组合的混合题,解题的思路是先解决组合问题,然后再讨论排列问题。

在解决排列与组合的应用题时应注意以下几点:(1)限制条件的排列问题常见命题形式: “在”与“不在” “相邻”与“不相邻”

在解决问题时要掌握基本的解题思想和方法:

①“相邻”问题在解题时常用“捆绑法”,可以把两个或两个以上的元素当做一个元素来看,这是处理相邻最常用的方法。

②“不相邻”问题在解题时最常用的是“插空法”。

③“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置。

④元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后利用规定顺序的实情求出结果。

(2)限制条件的组合问题常见命题形式: “含”与“不含” “至少”与“至多”

在解题时常用的方法有“直接法”或“间接法”。

(3)在处理排列组合综合题时,通过分析条件按元素的性质分类,做到不重复,不遗漏按事件的发生过程分类、分步,正确地交替使用两个原理,这是解决排列问题的最基本,也是最重要的思想方法。

4、解题步骤:

(1)认真审题:看这个问题是否与顺序有关,先归结为排列问题或组合问题或二者的综合题,还应考虑以下几点:

①在这个问题中 个不同的元素指的是什么?② 个元素指的又是什么? ②从 个不同的元素中每次取出 个元素的排列(或组合)对应的是什么事件;(2)列式并计算;(3)作答。

二、学习过程 题型一:排列应用题

9名同学站成一排:(分别用A,B,C等作代号)(1)如果A必站在中间,有多少种排法?(答案:)(2)如果A不能站在中间,有多少种排法?(答案:)

(3)如果A必须站在排头,B必须站在排尾,有多少种排法?(答案:)(4)如果A不能在排头,B不能在排尾,有多少种排法?(答案:)(5)如果A,B必须排在两端,有多少种排法?(答案:)(6)如果A,B不能排在两端,有多少种排法?(答案:)(7)如果A,B必须在一起,有多少种排法?(答案:)(8)如果A,B必须不在一起,有多少种排法?(答案:)(9)如果A,B,C顺序固定,有多少种排法?(答案:)题型二:组合应用题

若从这9名同学中选出3名出席一会议

(10)若A,B两名必在其内,有多少种选法?(答案:)(11)若A,B两名都不在内,有多少种选法?(答案:)

(12)若A,B两名有且只有一名在内,有多少种选法?(答案:)(13)若A,B两名中至少有一名在内,有多少种选法?(答案: 或)(14)若A,B两名中至多有一名在内,有多少种选法?(答案: 或)题型三:排列与组合综合应用题 若9名同学中男生5名,女生4名

(15)若选3名男生,2名女生排成一排,有多少种排法?(答案:)(16)若选3名男生2名女生排成一排且有一男生必须在排头,有多少种排法?(答案:)

(17)若选3名男生2名女生排成一排且某一男生必须在排头,有多少种排法?(答案:)

(18)若男女生相间,有多少种排法?(答案:)题型四:分组问题

6本不同的书,按照以下要求处理,各有几种分法?(19)一堆一本,一堆两本,一堆三本(答案:)(20)甲得一本,乙得两本,丙得三本(答案:)(21)一人得一本,一人得两本,一人得三本(答案:)(22)平均分给甲、乙、丙三人(答案:)(23)平均分成三堆(答案:)

(24)分成四堆,一堆三本,其余各一本(答案:)(25)分给三人每人至少一本。(答案: + +)题型五:全能与专项

车间有11名工人,其中5名男工是钳工,4名女工是车工,另外两名老师傅既能当车工又能当钳工现在要在这11名工人里选派4名钳工,4名车工修理一台机床,有多少种选派方法?

题型六:染色问题

(26)梯形的两条对角线把梯形分成四部分,用五种不同颜色给这四部分涂不同颜色,且相邻的区域不同色,问有()种不同的涂色方法?(答案:260)

(27)某城市在中心广场建造一个花圃,花圃分为6个部分(如图)。现在栽种4种不同颜色的花,每部分栽种一种且相 邻部分不能栽种同样颜色的花,不同的栽种方法有 种。分析:先排1、2、3排法 种排法;再排4,若4与2同色,5有 种排法,6有1种排法;若4与2不同色,4只有1种排法; 若5与2同色,6有 种排法;若5与3同色,6有1种排法 所以共有(+ +1)=120种 题型七:编号问题

(28)四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有多少种?(答案:144)

(29)将数字1,2,3,4填在标号为1,2,3,4的四个方格里,每格填上一个数字且每个方格的标号与所填的数字均不相同的填法有多少种?(答案:9)题型八:几何问题

(30):(Ⅰ)四面体的一个顶点为A,从其它顶点和各棱的中点中取3个点,使它们和点A在同一个平面上,有多少种不同的取法?(Ⅱ)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,有多少种不同的取法?

解:(1)(直接法)如图,含顶点A的四面体的3个面上,除点A外都有 5个点,从中取出3点必与点A共面共有 种取法,含顶点A的 三条棱上各有三个点,它们与所对的棱的中点共面,共有3种取法。根据分类计数原理,与顶点A共面三点的取法有 +3=33(种)

(2)(间接法)如图,从10个顶点中取4个点的取法有 种,除去4点共面 的取法种数可以得到结果。从四面体同一个面上的6个点取出4点必定共面。有 =60种,四面体的每一条棱上3点与相对棱中点共面,共有6种共面情况,从6条棱的中点中取4个点时有3种共面情形(对棱中点连线两两相交且互相平分)故4点不共面的取法为

-(60+6+3)=141 题型九:关于数的整除个数的性质:

①被2整除的:个位数为偶数;

②被3整除的:各个位数上的数字之和被3整除;

③被6整除的:3的倍数且为偶数;

④被4整除的:末两位数能被4整除;

⑤被8整除的:末三位数能被8整除;

⑥25的倍数:末两位数为25的倍数;

⑦5的倍数:个位数是0,5;

⑧9的倍数:各个位数上的数字之和为9的倍数。

(31):用0,1,2,3,4,5组成无重复数字的五位数,其中5的倍数有多少个?(答案:216)

题型十:隔板法:(适用于“同元”问题)

(32):把12本相同的笔记本全部分给7位同学,每人至少一本,有多少种分法? 分析:把12本笔记本排成一行,在它们之间有11个空当(不含两端)插上6块板将本子分成7份,对应着7名同学,不同的插法就是不同的分法,故有 种。

三、在线测试题

1.以一个正方形的顶点为顶点的四面体共有(D)个(A)70(B)64(C)60(D)58 2.3名医生和6名护士被分配到3所所为学生体检,每校分配1名医生和2名护士,不同的分配方法共有(D)

(A)90种(B)180种(C)270种(D)540种

3.将组成篮球队的12个名额分配给7所学校,每校至少1个名额,则不同的名额分配方法共有(A)

(A)(B)(C)(D)

4.5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为(B)(A)480(B)240(C)120(D)96 5.编号为1,2,3,4,5的五个人分别去坐在编号为1,2,3,4,5的座位上,至多有两个号码一致的坐法种数为(C)

(A)90(B)105(C)109(D)100 6.如右图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现在4种颜色可供选择,则不同的着色方法共有(B)种(用数字作答)(A)48(B)72(C)120(D)36 7.若把英语“error”中字母的拼写顺序写错了,则可能出现的错误的种数是(A)。(A)19(B)20(C)119(D)60 8.某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分,一球队打完15场,积分33分,若不考虑顺序,该队胜、负、平的情况有(D)(A)6 种(B)5种(C)4种(D)3种

四、课后练习

1.10个不加区别的小球放入编号为1,2,3的三个盒子中,要求每个盒内的球数不小于盒子的编数,问有 种不同的放法?

2.坐在一排9个椅子上,相邻两人之间至少有2个空椅子,则不同的坐法的种数是 3.如图A,B,C,D为海上的四个小岛,要建三座桥,将这四个岛连接起来,不同的建桥方案共有 种。

4.面直角坐标系中,X轴正半轴上有5个点,Y轴正半轴有3个点,将X轴上这5个点或Y轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有 个。5.某邮局现只有邮票0.6元,0.8元,1.1元的三种面值邮票,现有邮资为7.5元的邮件一件,为使粘贴的邮票张数最小,且邮资恰为7.5元,则至少要购买 张邮票。6.(1)从1,2,„,30这前30个自然数中,每次取出不同的三个数,使这三个 数的和是3的倍数的取法有多少种?

(2)用0,1,2,3,4,5这六个数字,可以组成多少个能被3整除的四位数。

(3)在1,2,3,„,100这100个自然数中,每次取出三个数,使它们构成一个等差数列,问这样的等差数列共有多少个?

(4)1!+2!+3!+„+100!的个位数字是

7.5个身高均不等的学生站成一排合影,若高个子站中间,从中间到两边一个比一个矮,则这样的排法种数共有()

(A)6种(B)8种(C)10种(D)12种

8.某产品中有4只次品,6只正品(每只产品均可区别),每次取一只测试,直到4只次品全部测出为止,则第五次测试发现最后一只次品的可能情况共有多少种?

《排列和组合的综合应用》多媒体教学的教师小结

数学教师在传统教学环境下也许会遭遇诸如以下的困难: ——我怎样向学生提供更多的相关的学习资料? ——我如何有效地进行课堂检测并及时反馈?

——我怎样让每个学生都参与讨论并且使讨论的结果都呈现出来?

这种在教学资源、教学检测、教学组织上所体现出来的局限,不仅在传统教学环境下难以改变,即使在多媒体辅助教学下也是捉襟见肘。它不仅影响了数学教学效率的提高,更是阻碍了数学教改的进程。

幸而,计算机技术的发展已经到了网络时代,基于Web的网络教学给我们的数学教学带来了革命的曙光。鉴此认真分析教材特点,学生特点开了《排列和组合的综合应用》这堂网络课,现对此进行课后总结:

《排列和组合的综合应用》这堂网络课,教学重点是几种常见命题的形式的解题思路及有关应用。首先,通过排列和组合有关知识的学习,对排列和组合有一个整体上的认识,给学生打下了很好的基础。其次,在教学中,本着以学生为本的原则,让学生自己动手参与实践,使之获取知识。在传统教学过程中,学生主要依靠老师,自主探索的能力不强,因此在本节课学习中,教师在课堂上适时抛出问题,使学生有的放矢,有针对性,知道自己下一步应该做什么,同时组织学生以小组进行讨论学习,防止出现学生纯粹浏览网页这种现象。在强大的网络环境下,让学生探讨排列和组合的区别与联系,自主发现结论,以人机交互的方式,使个性化学习成为可能,体现了学科教学与教育技术的整合。第三、针对数学学科的特点,在学生自主探索发现结论后,还需在理论上给予支持。因此,对各种常见的类型,教师在课堂上分别给予小结,目的是让学生在今后的自主学习中,若遇到同样的问题,有能力自己解决。从而让学生逐步熟悉、形成较为完整的一套自主学习的方法。

在上课的过程中,充分体现出计算机的交互和便捷的特点,学生可以根据需要,在老师的引导下,选择自己学习的进度和内容,去自主的学习和探索。通过实际操作,帮助理解和掌握本节课重点内容。在上课过程中,学生积极思考,相互协作讨论,踊跃回答问题,气氛活跃,教学效果好。在学生课后的反馈中,总体的反映都觉得各自获益匪浅,从中学到了不少的东西,切实掌握了排列和组合的有关知识。

当然,本节课还有许多需要改进的地方,如课堂上安排节奏比较快,例题,练习留给学生探索,动手的时间还可以再多一些;另外由于学生电脑的水平以及数学学科的特点,所以许多学生不能很熟练地操作电脑,许多数学符号,公式无法在讨论区中体现。

总之,网络探究的最大好处是学生能够在网络中找到课堂教学中体验过和未体验过的感性知识,提高学生求知欲,增强学习的自主性,使学生的个性在学习中得以充分张扬。而探究过程中的相互交流不仅可扩大知识的摄入量,更可培养学生形成一种在交流中学习成长的意识。因此在网络教学这领域中,今后还有很大的学习空间,做为一名教师,要适应时代的需要,改善自己平时的传统教学思维,大胆创新,努力学习,不断地探索,不断反思。树立现代教育观念,不断学习现代化技术,完善自己,提高素质,才能担负起祖国赋于我们肩上的重任。

下载高中数学第十章-排列组合范文word格式文档
下载高中数学第十章-排列组合范文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学:排列组合与二项式定理测验试题(A)

    《数学》第十章—排列组合与二项式定理测验试题(A卷)班别:学号:姓名:成绩:一、填空题:(每空2分,共30分)1.加法原理和乘法原理的主要区别在于:加法原理针对的是问题;乘法原理针对的是......

    2011高中数学排列组合典型例题精讲

    高中数学排列组合典型例题精讲概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n个不同元素中,任取m(mn)个元素(这里的被取元素各不相同)按照一定的顺....序排成一列,叫做从......

    高中数学排列组合与二项式定理知识点总结

    排列组合与二项式定理知识点 1.计数原理知识点 ①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类) 2. 排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!......

    高中数学轻松搞定排列组合难题二十一种方法10页

    高考数学轻松搞定排列组合难题二十一种方法复习巩固1.分类计数原理(加法原理)完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,„,在第n类办......

    2014年全国高中数学联赛一道排列组合题目的解答

    问题:18个名额分配给4个班,要求每个班至少1个名额,且任意班名额不同,一共有多少分法? 解答:先用隔板法:C17^3=680, 再减去名额相等的情况: 1、(1,1,X,Y),其中x+y=16,即:(x,y)为:(1,15)、(2,......

    高中数学教学论文 排列组合的解题策略(本站推荐)

    高中数学教学论文:排列组合的解题策略 让学生成为"演员"——也谈排列组合的解题策略 排列组合作为高中代数课本的一个独立分支,因为极具抽象性而成为"教"与"学"难点。有相当......

    2016(好)高中数学排列组合问题常用的解题方法

    初高中理科专业教学机构 高中数学排列组合问题常用的解题方法 一、相邻问题捆绑法 题目中规定相邻的几个元素并为一个组(当作一个元素)参与排列. 例1 五人并排站成一排,如果甲......

    2012(好)高中数学排列组合问题常用的解题方法

    高中数学排列组合问题常用的解题方法 江苏省滨海县五汛中学 王玉娟 排列组合是高中数学的重点和难点之一,是进一步学习概率的基础。排列组合问题通常联系实际,生动有趣,并且能......