第一篇:新人教版六年级下册数学教案和反思
2017学年第二学期
数学教案
六年级
第一单元 负数
【单元教学目标】
1.在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。
2.初步学会用负数表示一些日常生活中的实际问题。3.能借助数轴初步理解正数、0和负数之间的关系。【单元重点难点】
负数的意义和数轴的意义及画法。
【单元教学指导】
1.通过丰富多彩的生活情境,加深学生对负数的认识。负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。
2.把握好教学要求。
对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。3.培养学生多角度观察问题,解决问题的能力。
教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。
【单元课时安排】 建议共分3课时:
负数的初步认识 2课时 在数轴上表示正数、0和负数 1课时 【知识结构】
第1课时 负数的初步认识(1)
【教学内容】 负数的初步认识
(1)(教材第2页例1)。【教学目标】
结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。
【重点难点】 体会负数的重要性。【教学准备】 多媒体课件。
【情景导入】
1.教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)
2.引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-3℃和3℃各代表什么意思?)
引出课题并板书:负数的初步认识(1)【新课讲授】 教学教材第2页例1。
(1)教师板书关键数据:0℃。
(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。
(3)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。
(4)刚刚同学回答得很对,读法也很正确。
(5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?
学生讨论合作,交流反馈。
(6)请同学们把图上其它各地的温度都写出来,并读一读。(7)教师展示学生不同的表示方法。
(8)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。
【课堂作业】 完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。答案:-18℃温度低。【课堂小结】
通过这节课的学习,你有什么收获? 【课后作业】
完成练习册中本课时的练习。
第1课时 负数的初步认识(1)
0℃-3℃ 3℃(+3℃)
通过温度的概念,初步学习负数,理解气温高低与温度的关系,是负数学习的第一步。
第2课时 负数的初步认识(2)
【教学内容】
负数的初步认识
(2)(教材第3页例2)。【教学目标】
通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。
【重点难点】
体会引入负数的必要性,初步理解负数的含义。
【情景导入】
教师:上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的?
组织学生讨论回忆上一课内容。
师:很好,大家都很棒。今天我们继续学习负数知识。引出课题并板书:负数的初步认识(2)【新课讲授】 1.教学例2。
(1)教师出示存折明细示意图。(教材第3页的主题图)教师:同学们能说说“支出(-)或(+)”这一栏的数各表示什么意义吗?组织学生分组讨论、交流,然后指名汇报。
(2)引导学生归纳总结:像2000,500这样的数表示的是存入的钱数;而前面有“-”号的数,像-500,-132这样的数表示的是支出的钱数。
(3)教师:上述数据中500和-500意义相同吗?(500和-500意义相反,一个是存入,一个是支出)。你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗?说说你是怎么表示的?师把学生的表示结果一一板书。
2.归纳正数和负数。
(1)你能把板书的这些数进行分类吗?小组讨论交流。(2)教师展示分类的结果,适时讲解。像+8,+4,+2000,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。像-8,-4,-500,-20这样的数,我们把它叫做负数。
(3)那么0应该归为哪一类呢?组织学生讨论,相互发表意见。师设难:“我认为0应该归为正数一类。”
归纳:0既不是正数也不是负数,它是正数和负数的分界点。(4)你在什么地方见过负数?教师鼓励学生注意联系实际举出更多的例子。
【课堂作业】
完成教材第4页的“做一做”第2题。组织学生动手填一填,在小组中交流检查。答案:
正数有:2.5 + +41 负数有:-7-5.2 【课堂小结】
通过这节课的学习,你有什么收获? 【课后作业】
完成练习册中本课时的练习。
第2课时 负数的初步认识(2)
正数:+8 负数:-8 +4-4 +2000-2000 +500-500 +100-100 +20-20 0既不是正数也不是负数。
1.负数的出现,是生活中表示两种相反意义的量的需要,在教学中,教师应通过丰富多彩的生活实例激发学生的学习兴趣。
2.小学阶段只要求学生初步认识负数,理解负数,在教学中不要求给正负数下定义,只要让学生知道什么是正数什么是负数就可以
了。
第3课时 在数轴上表示正数、0和负数
【教学内容】
借助数轴理解正数和负数的意义(教材第5页例3)。【教学目标】
1.借助数轴初步理解正数、0、负数。
2.初步体会数轴上数的顺序,完成对数的结构的初步构建以及正数与负数的比较。
【重点难点】 认识数轴、0。
【情景导入】
教师用CAI课件演示教材第5页的主题图。
教师:如何在一条直线上表示出他们运动后的情况呢? 【新课讲授】 教学例3。
(1)教师:怎样用数来表示这些学生和大树的相对位置关系呢? 组织学生在小组中议一议,然后汇报。
(2)教师结合学生的汇报,用课件出示数轴,在相应点的下方标出对应的数。
(3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(4)教师总结:我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。
(5)引导学生观察数轴: ①从0起往右依次是?从0起往左依次是?你发现什么规律? ②在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?
师及时小结,数轴除了可以表示整数,还可以表示小数、分数。每个数都能在数轴上找到它们相对应的点。
【课堂作业】
1.完成教材第5页的“做一做”。学生独立练习,指名汇报。2.完成教材第6页练习一的第4题。第4题组织学生独立完成,并在小组中相互交流、检查。教师用课件出示答案、订正。
答案: 1.略
2.第4题:点A表示的数是-7;点B表示的数是-4;点C表示的数是-1;点D表示的数是3;点E表示的数是6。
【课堂小结】
通过这节课的学习,你有什么收获? 【课后作业】
完成练习册中本课时的练习。
第3课时 在数轴上表示正数、0和负数
上面这样的直线叫做数轴。
本堂课学生的误区在于如何在数轴上找到表示负分数的点,学生很容易混淆像、这样的一些点,教师要加强此内容的指导和练习。
第二单元 百分数
(二)【单元教学目标】
1.理解折扣、成数、税率、利率的含义,知道它们在生活中的简单应用,会进行这方面的简单计算。
2.在理解、分析数量关系的基础上,使学生能正确地回答有关百分数的问题。
【单元重点难点】 利用百分数解决实际问题。
【单元教学指导】
注意概念之间的联系与区别,以提高学生解决问题的能力。本单元的概念较多,教学时要突出重点,帮助学生弄清概念间的联系与区别。只有理解了百分数的含义,才能正确地运用它解决百分率、折扣、成数、税率、利率等实际问题。再如,百分数和分数虽然在本质上是相同的,但在意义上还是有一定的区别的:百分数表示两个数之间的关系;分数既可以表示一个具体的数、又可以表示两个数之间的关系。
【单元课时安排】
建议共分5课时:折扣1课时 成数1课时 税率1课时 利率
1课时 解决问题1课时
【知识结构】
第1课时 折扣
【教学内容】
折扣(教材第8页的内容,练习二第1~3题)。【教学目标】 1.明确折扣的含义。
2.能熟练地把折扣写成分数、百分数。3.正确解答有关折扣的实际问题。
4.学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。
【重点难点】
1.会解答有关折扣的实际问题。
2.合理、灵活地选择方法,解答有关折扣的实际问题。【教学准备】 多媒体课件。
【情景导入】
圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销的?(学生汇报调查情况。)
【新课讲授】
1.教学折扣的含义,会把折扣改写成百分数。(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?
(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(电脑显示)
①大衣,原价:1000元,现价:700元。②围巾,原价:100元,现价:70元。③铅笔盒,原价:10元,现价:? ④橡皮,原价:1元,现价:?
(3)动脑筋想一想:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?
(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。
(5)讨论,找规律。
A.学生动手操作、计算,并在计算或讨论中发现规律。B.学生汇报寻找的方法:利用计算器,原价乘以70%恰好是标签的售价或现价除以原价大约都是70%;或查书等等。
(6)归纳,得定义。
A.通过小组讨论,谁能说说打七折是什么意思?打八折是什么意思?打八五折呢?
B.概括地讲,打折是什么意思?如果用分母是十的分数,该怎样表示?(“几折”就是十分之几,也就是百分之几十)
C.通俗来讲,商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就是十分之几,也就是百分之几十。如八五折就是85%,九折就是90%。一般情况下,不把折扣写成十分之几这样的分数形式,写成分数时,有时会出现小数(例如八五折就会写成),不便于计算和理解。
(7)练习。
①四折是十分之(),改写成百分数是()。②六折是十分之(),改写成百分数是()。③七五折是十分之(),改写成百分数是()。④九二折是十分之(),改写成百分数是()。2.运用折扣含义解决实际问题。
出示问题(1):爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?
① 导学生分析题意:打八五折怎么理解?是以谁为单位“1”? ② 找出数量关系式。
先让学生找出单位“1”,然后再找出数量关系式: 原价×85%=实际售价
③ 学生独立根据数量关系式,列式解答。
④全班交流。根据学生的汇报,板书:180×85%=153(元)答:买这辆车用了153元。
出示问题(2):爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
① 导学生理解题意:只花了九折的钱怎么理解?以谁为单位“1”? ② 学生试算,独立列式。
③全班交流。根据学生的汇报,板书:
第一种算法:原价160元,减去现价,就是比原价便宜多少钱。160-160×90% =160-144 =16(元)
第二种算法:原价160元,现价比原价便宜了(1-90%)。160×(1-90%)=160×10% =16(元)
重点引导学生理解第二种算法,知道现价比原价便宜了10%。3.典例讲析。
例 在某商店促销活动时,原价800元的某品牌自行车九折出售,最后剩下的几辆车,商家再次打八折出售,最后的几辆车售价多少元?分析:原价800元,第一次打九折出售,价格是原价的90%,再次打八折出售,价格是第一次打九折后的80%。可以先求出第一次打折后的价格,再求出第二次打折后的价格,即为现在的售价。
解:800×90%×80%=720×80%=576(元)答:最后的几辆车售价是576元。【课堂作业】
1.(1)爸爸买了一个剃须刀,原价240元,现在只花了八折的钱,比原价便宜了多少钱?
A.打八折怎么理解?是以谁为单位“1”? B.学生试做,讲评。(2)判断:
①商品打折扣都是以原商品价格为单位“1”,即标准量。()②一件上衣现在打八折出售,就是说比原价降低10%。()2.完成教材第8页“做一做”练习题。3.完成教材第13页练习二第1~3题。
说明:第1题是一道开放题,有多种可能,应注意给学生提供交流自己想法的机会。练习后可指出“五折”也可以说成“半价”,丰富学生的生活经验。
第2题,要注意指导学生理解9.6元表示的实际含义,它与八折有什么关系。使学生明确9.6元就是打折后比原价少的钱数,它相当于原价的1—80%,在此基础上让学生列出方程或算式。答案:1.(1)240-240×80%=48(元)(2)① √ ② ×
2.第8页“做一做”:52 73.5 30.8 3.练习二第1题:(1)1.5×50%=0.75(元)2.4×50%=1.2(元)1×50%=0.5(元)3×50%=1.5(元)
(2)(此题答案不唯一)可以买一种面包,也可以两种或两种以上合买。单独买各种打折后的面包:
①3÷0.75=4(个)合买各种打折后的面包: ②3÷0.5=6(个)33÷1.5=2(个)
④3÷1.2=2(个)„„0.6(元),再买1个打折后0.5元的面包。⑤可以买3个0.5元的面包,买2个0.75元的面包。可以买1个1.5元的面包,买2个0.75元的面包„„第3题:分析:按原价的八折买,优惠价占二折,9.6元占原价的20%,求出原价,用除法计算。解答:9.6÷20%=48(元)【课堂小结】
通过这节课的学习你有什么收获? 【课后作业】
完成练习册中本课时的练习。
第1课时 折扣
八五折180×85%=153(元)
九折160×(1-90%)=160×10%=16(元)总结: 解决与折扣有关的实际问题实质上是求一个数的百分之几是多少和已知一个数的百分之几是多少求这个数的问题。在分析折扣时,不要把打折后的价格当作定价,正确区分定价、进价和售价是解决折扣问题的关键。
1.“打折”这个概念,在日常生活中用到,学生比较熟悉。2.学生对打折的认识还只是停留于感性认识,如打折,学生都知道是便宜了,比原价少了,但是真正能够解释清楚的并不多,对折扣的知识并未真正理解。
第2课时 成数
【教学内容】
成数(教材第9页内容)。【教学目标】 1.明确成数的含义。
2.能熟练的把成数写成分数、百分数。3.正确解答有关成数的实际问题。【重点难点】 1.成数的理解。2.成数的计算。【教学准备】 多媒体课件。
【情景导入】
农业收成,经常用“成数”来表示。例如,报纸上写道:“今年我省油菜籽比去年增产二成”„„
教师:同学们有留意到类似的新闻报道吗?(学生汇报相关报导)【新课讲授】
1.介绍成数的含义,会把成数改写成分数,百分数。(成数:表示一个数是另一个数的十分之几,通称“几成”)(1)刚才大家都说了很多有成数的发展变化情况,那么这些“成数”是什么意思呢?比如说,增产“二成”,你怎么理解?
(学生讨论并回答)教师板书:
成数 分数 百分数 二成 十分之二 20%(2)试说说以下成数表示什么?
①出口汽车总量比去年增加三成。这里的“三成”表示什么? ②北京出游人数比去年增加两成。这里的两成表示什么? 引导学生讨论并回答。
2.运用成数的含义解决实际问题。
(1)出示教材第9页例2:某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
(2)分析题目,理解题意:
①今年比去年节电二成五怎么理解?是以哪个量为单位“1”? ②找出数量关系式。
先让学生找出单位“1”,然后再找出数量关系式: 今年的用电量=去年的用电量×(1-25%)③学生独立根据关系式,列式解答。④全班交流。
方法一:350×(1-25%)=350×75%=350×0.75=262.5(万千瓦时)方法二:350×(1-25%)=350×75%=350×75/100=262.5(万千瓦时)
【课堂作业】
完成教材第9页“做一做”。
答案:15000÷(1+20%)=15000÷1.2=12500(人)【课堂小结】
这节课我们一起学习了有关成数的知识,你们对成数的知识有哪些了解?
【课后作业】
完成练习册中本课时的练习。
第2课时 成数
“成数”已经广泛应用于表示各行各业的发展变化情况。教学本课时要多联系实际讲解,列关系式时要多强调哪个量是单位“1”,加强学生的逻辑训练。
第3课时 税率
【教学内容】
税率(教材第10页有关纳税的内容,练习二第6、7题)。【教学目标】
1.使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。
2.在计算税款的过程中,加深学生对社会现象的理解,提高学生解决问题的能力。
3.增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。
【重点难点】 1.税额的计算。2.税率的理解。【教学准备】 多媒体课件。
【情景导入】 1.口答算式。
(1)100的5%是多少?(2)50吨的10%是多少?(3)1000元的8%是多少?(4)50万元的20%是多少? 2.什么是比率? 【新课讲授】
1.阅读教材第10页有关纳税的内容。说说:什么是纳税? 2.税率的认识。
(1)说明:纳税的种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率,一般是由国家根据不同纳税种类定出不同的税率。
(2)试说说以下税率表示什么。A.商店按营业额的5%缴纳个人所得税。这里的5%表示什么?B.某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么? 3.税款计算。
(1)出示例3:一家饭店十月份的营业额约是30万元。如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税约多少万元?
(2)分析题目,理解题意。
引导学生理解“按营业额的5%缴纳营业税”的含义,明确这里的5%是营业税与营业额比较的结果,也就是缴纳的营业税占营业额的5%,题中“十月份的营业额是30万元”,因此十月份应缴纳的营业税就是30万元的5%。
(3)学生列出算式。
求一个数的百分之几是多少,用乘法计算。列式:30×5%(4)学生尝试计算。(5)汇报交流。
30×5%这个算式有两种计算方法。
方法1:把百分数化成分数来计算。30×5%=30×元)
方法2:把百分数化成小数来计算。30×5%=30×0.05=1.5(万元)
【课堂作业】
1.巩固练习:教材第10页“做一做”。2.完成教材第14页练习二第6题。答案:
1.(5000-3500)×3%=45(元)2.300×3%=9(元)【课堂小结】
这节课我们一起学习了有关纳税的知识,你们对纳税的知识有哪些了解?
=1.5(万【课后作业】
1.完成练习册中本课时的练习。2.教材第14页第7题。
第3课时 税率
应纳税额=收入额×税率收入额=应纳税额÷税率税率=应纳税额÷收入额×100%30×5%=1.5(万元)
答:10月份应缴纳营业税约1.5万元。
1.教师在给学生讲解应纳所得税时,如果没有说明,学生可能会对个人所得税的应纳税额的理解模糊。
2.学生对于纳税的知识很感兴趣,积极性很高。
第4课时 利率
【教学内容】
利率(教材第11页有关利率的内容)。【教学目标】
1.通过教学使学生知道储蓄的意义;明确本金、利息和利率的含义;掌握计算利息的方法,会进行简单计算。
2.对学生进行勤俭节约,积极参加储蓄以及支援国家、灾区、贫困地区建设的思想品德教育。
【重点难点】
1.掌握利息的计算方法。
2.正确地计算利息,解决利息计算的实际问题。【教学准备】 多媒体课件。
【情景导入】
随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一来可以支援国家建设,二来对个人也有好处,既安全、有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。
【新课讲授】
1.介绍存款的种类、形式。
存款分为活期、整存整取和零存整取等方式。
2.阅读教材第11页的内容,自学讨论例4,理解本金、利息、税后利息和利率的含义。(例如:王奶奶2012年月8月1日把5000元钱存入银行,整存整取两年,到2013年8月1日,王奶奶不仅可以取回存入的5000元,还可以得到银行多付给的150元,共5150元。)(注:这里不考虑利息税)
本金:存入银行的钱叫做本金。王奶奶存入的5000元就是本金。利息:取款时银行多支付的钱叫做利息。利率:利息和本金的比值叫做利率。
(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。
(2)阅读教材第11页表格,了解同一时期各银行的利率是一定的。
3.学会填写存款凭条。
把存款凭条画出来,请学生尝试填写。然后评讲。(要填写的项目:户名、存期、存入金额、存种、密码、地址等,最后填上日期。)
4.利息的计算。
(1)出示利息的计算公式:利息=本金×利率×时间(2)计算方法:
若按照2012年7月的银行利率,如果王奶奶的5000元钱整存整取,两年到期的利息是多少?学生计算后交流,教师板书:5000×3.75%×2=375(元)加上王奶奶存入的本金5000元,到期时她能得到本金和利息,一共5375元。
【课堂作业】
本题是有关“打折”和“纳税”的问题,是百分数的具体应用,在练习时应让学生说说自己每一步计算的意义,并进行集体订正。
【课堂小结】
通过本节课的学习,你学会了什么?什么叫本金?什么叫利息?什么叫利率?如何计算利息?
【课后作业】
1.完成练习册中本课时的练习。2.教材第14页第9题。
第4课时 利率
利息=本金×利率×时间
任何一种存款,在计算利息时,都要乘以存入的时间,如果存款的利率是年利率,计算时所乘时间单位应是年,如果存款的利率是月利率,计算时所乘时间单位应是月,不要一律按年计算。
折扣、成数、税率、利率是百分数在生活中的具体应用,与人们的生活密切相关。其中,折扣是学生们日常生活最熟悉的,教学中,我没有剥夺孩子们想说的权利,让他们自由地来说说他们对折扣的理解,并引入商品打折销售的情境,解决与之相关的实际问题。但教学中我没有说清楚几折就是十分之几,因此个别孩子对于七五折这样的概念还不是很清楚。而税率和利率,则主要是通过公式的展示教给孩子解题的方法。
第5课时 解决问题
【教学内容】
用百分数解决问题。(教材第12页例5)【教学目标】
1.熟练地掌握百分数应用题的数量关系,并能解决问题。2.培养学生良好的学习习惯。【重点难点】
认真审题,用百分数解决实际问题。【教学准备】 多媒体课件。
【复习导入】
前面我们已经学习了折扣、成数、税率、利率等百分数在生活中的具体应用,今天我们一起来学习它们更多的应用,学习新知识之前,我们来回忆下之前的内容。
口头列式。
(1)妈妈想买一件原价500元的裙子,五折之后这条裙子多少钱?
(2)爸爸这个月工资由原来的6000元涨了一成五,爸爸现在工资是多少?
(3)爸爸的月工资是6000,扣除3500个人免税征额后的部分需要按3%的税率缴纳个人所得税,他应缴个人所得税多少元?(4)小云将压岁钱1000元存入银行,存期为3年,年利率为4.25%。到期支取时,小云一共能取回多少钱?
师:这几道题分别属于什么类型的应用题? 学生交流,汇报。【新课讲授】 教学例5。
1.学生读题,明确已知条件及问题,尝试说说自己的解题思路。2.利用提问,引导学生思考回答,归纳出解题思路。教师:“满100元减50元”是什么意思?
引导回答:就是在总价中取整百元部分,每个100元减去50元。不满100元的零头部分不优惠。
解题思路:
(1)在A商场买,直接用总价乘以50%就能算出实际花费。(2)在B商场买,先看总价中有几个100,230里有两个100,然后从总价里减去2个50元。
3.学生独立列出算式后,让他们计算并给出结果。板书:A:230×50%=115(元)B:230-2×50=130(元)A
提问:通过计算,我们知道了A商场更省钱,在什么时候两个商场价格差不多呢?
反思:看起来满100减50元不如打五折实惠。如果总价能凑成整百多一点就差不多了。
【课堂作业】
完成教材第12页“做一做”。学生独立完成,教师讲解。答案:A商场:120-40=80(元)B:120×60%=72(元)B商场更省钱。【课堂小结】
通过这节课,你有什么收获,你将如何运用到生活中呢? 【课后作业】
完成练习册中本课时的练习。
第5课时 解决问题
A商场:230×50%=115(元)B商场:230-50×2=130(元)115<130,A商场更省钱。
本堂课我运用了“复习——提问——题目——引导——分析——等量关系——解决问题——反思”这样的环节来教学例题,本是很清晰的一个数学思路,意在引导学生解决问题的同时教给他们此类问题的解决方法。
第三单元 圆柱与圆锥
【单元教学目标】
1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2.探索并掌握圆柱的侧面积、表面积的计算方法以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决相关的简单实际问题。
3.通过观察、设计和制作圆柱、圆锥模型的活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。使学生经历探索知识的过程,培养学生自主解决问题的能力。
【单元重点难点】
1.认识并掌握圆柱和圆锥的形体特征,掌握圆柱表面积和体积、圆锥体积的计算方法及推导过程。
2.利用所学的知识解决实际问题。
【单元教学指导】
1.加强数学知识与实际生活的联系,提高学生运用所学知识解决实际问题的能力。
本单元内容加强了与生活的联系,也为教师组织教学提供了思路。因此教学时应注意加强与实际生活的联系,重视运用所学知识解决实际问题的意识与能力的训练。如,在认识圆柱和圆锥之前,可以让学生收集、整理生活中圆柱、圆锥的实例和信息材料,以便在课堂中交流。认识圆柱、圆锥后,还可以让学生根据需要创设和制作一个圆柱或圆锥形物品,让大家欣赏或使用,这样既可激发学生的学习兴趣,又可提高学生运用数学为生活服务的意识和能力。
2.让学生经历探索知识的过程,培养学生自主解决问题的能力。本单元加强了对图形特征、计算方法的探究。为此,在教学时,应放手让学生经历探索的过程,在观察、操作、推理、想象过程中掌握知识、发展空间观念。如圆锥体积的教学,教材首先创设了一个问题情境“如何知道像铅锤这样的物体的体积?”引导学生探索,并给出提示:圆锥的体积与圆柱的体积有没有关系。在教学时,教师应大胆放手让学生探究,注意提供给学生积极思考,充分参与探索活动的时间和空间。如圆锥的体积等于与它等底等高的圆柱体积的三分之一,应让学生在经历试验探究的过程中获取,以改变只按教材说明进行演示得出结论的做法。【单元课时安排】建议共分10课时:
1.圆柱 6课时 2.圆锥 3课时 整理和复习1课时 【知识结构】
1.圆柱
第1课时 圆柱的认识
【教学内容】
圆柱的认识(教材第17~20页)。【教学目标】
1.使学生了解圆柱的特征,认识圆柱的底面及其直径和半径,圆柱的高、侧面及圆柱的展开图。
2.通过观察,认识圆柱并掌握它的特征,建立空间观念。3.培养学生的观察能力,增强从实物抽象到几何图形的能力。【重点难点】
1.理解并掌握圆柱的特征,建立空间观念。
2.明确圆柱沿高展开的侧面展开图是一个长方形(或正方形),理解长方形(侧面展开图)的长和宽与圆柱的底面周长和高的关系。
【情景导入】
师:今天我给大家带来一位朋友,你们知道它是谁吗?(师拿起圆柱体模型,让学生一起说出它的名字。)
师:在一年级我们就看见过它,却没有深刻认识它,想不想进一步认识它?
师:好,那么我们这节课就来认识一下圆柱,一起走近它,看看它究竟有什么奥秘。(教师板书课题:圆柱的认识。)
【新课讲授】 1.初步感知圆柱。
(1)大家找一找我们生活的周围有哪些圆柱形的物体,谁能说一说?(师指名回答)
(2)教师展示课件中常见的圆柱形物体。
(3)教师:这些物体有哪些共同的特点?大家也可以拿出自己手中的圆柱形物体看一看,摸一摸。
(4)教师又拿出几个不是圆柱,接近圆柱形物体,然后问:它们是圆柱吗?为什么?那么什么样的物体才是真正的圆柱?
学生回答后,教师强调:圆柱一定是直直的,上下一样粗细。2.教学例1。(1)认识圆柱的面。
分组活动,每人拿一个圆柱,摸一摸它的面。学生互相交流自己的感觉。启发学生自主探究圆柱的特征。
教师:圆柱一共有几个面?用手摸上、下底,看一看有什么特点?再摸一摸侧面,有什么感觉,它是一个什么面? 学生:3个面;形状相同,都是圆形,面积相等;曲面。教师小结:圆柱的上下两个面叫做底面,它们是完全相同的两个圆。圆柱的侧面是一个曲面。
教师在黑板上画出圆柱图,并把上下底面、侧面标出来。(2)认识圆柱的高。
①教师出示高、矮不同的圆柱体提问:哪个圆柱高,哪个圆柱矮? 想一想:圆柱的高矮与圆柱的两个底面之间有什么关系? 引导学生思考得出:圆柱的高矮与圆柱的底面无关。
②如何测量圆柱的高?小组讨论,找出测量方法。然后请一名学生展示自己的测量方法。
师问:他的测量方法好吗?有没有需要改进的地方?让学生各抒己见。
教师演示正确的测量方法。并强调:在测量中一定要注意圆柱要水平放置,刻度尺也要水平放置。
(3)教师出示准备好的长方形纸片。
教师:同学们和我一起快速转动纸片,看一看转出来的是什么形状。组织学生操作后,汇报结果。
3.教学例2。
(1)请同学们摸一摸你们的圆柱体的侧面,猜想一下,如果把侧面展开后会是什么形状?(2)组织学生分小组操作:剪开侧面,再展开。
(3)教师:你们有什么发现?会有几种情况出现?小组之间可以相互交流。
圆柱的侧面展开可能是长方形、正方形、平行四边形。教师同时用课件展示三种不同的圆柱侧面展开图,让学生系统直观的感受展开图。
(4)大家再认真观察展开图的长和宽并和圆柱相比较,此时的长相当于圆柱的什么?宽呢?学生观察并思考。教师用课件将长方形还原并再打开。
让学生经过比较、分析概括出:圆柱展开得到的长方形的长等于圆柱底面的周长,宽等于圆柱的高。(5)引导学生思考:什么情况下圆柱的侧面展开图是正方形? 引导学生回答:圆柱的底面周长与高相等时,圆柱的侧面展开图是正方形。同时教师用课件展示一遍。
【课堂作业】
1.完成教材第18、19页的“做一做”。组织学生先独立做一做,再在小组中相互交流。2.完成教材第20页练习三的第1、2、3题。
第1题要让学生仔细观察并准确地说出图中哪些地方或物体的哪一部分是圆柱。
第2题指名说。
第3题学生判断后,要让学生说理由。还可以让学生想一想,如果把第2、3个图形围起来,会出现什么情况? 答案:
2.第1题:手电筒的筒身、柱子、哑铃的把手和两端都是圆柱。第2题:长方体 正方体 圆柱。
第3题:第一个图 理由:将圆柱展开,长方形的长应等于底面圆的周长。
【课堂小结】
通过这节课的学习,你有哪些收获? 组织学生畅谈学习的收获。【课后作业】
完成练习册中本课时的练习。
1.教学圆柱的认识,应加强直观演示和操作。
2.探究圆柱的特征时,要让学生通过观察和操作,发现和总结出圆柱的特征。要注意两点:
(1)从整体上把握“圆柱是由哪几部分组成的?”在学生观察、交流的基础上,指出圆柱的两个圆面叫做圆柱的底面,周围的面叫侧面。
(2)深入对各部分的探究。如“圆柱的侧面、底面和高各有什么特征?”让学生动手操作,看看有什么发现。学生的一些发现可能只停留在直观判断的层面,应鼓励学生把圆剪下来放在另一个底面上,看是否重合。
3.认识圆柱的侧面展开图时,要放手让学生经历探究知识的过程。
第2课时 圆柱的表面积(1)
【教学内容】
圆柱的表面积(1)(教材第21页例3)。【教学目标】
1.理解圆柱的表面积的意义。2.探索并掌握圆柱的侧面积和表面积的计算方法,会正确地计算圆柱的侧面积和表面积。
【重点难点】
1.掌握圆柱的侧面积和表面积的计算方法。
2.理解圆柱的底面半径(直径)及圆柱的高和圆柱侧面的长、宽之间的关系。
【教学准备】
多媒体课件和圆柱体模型。
【复习导入】 1.复习引入。
指名学生说出圆柱的特征。2.口头回答下面的问题。
(1)一个圆形花池,直径是5m,周长是多少?(2)长方形的面积怎样计算? 板书:长方形的面积=长×宽。【新课讲授】
1.教师出示圆柱形实物,师生共同研究圆柱的侧面积。师:圆柱的侧面展开是一个什么图形? 生:长方形。
师:那么圆柱的侧面积与展开后的长方形的面积是什么关系?待学生回答后,教师板书:圆柱的侧面积=长方形的面积。
师:长方形的面积=长×宽,长相当于圆柱的什么?宽呢?由此可以得出什么?
教师待学生回答后接着板书“=圆柱的底面周长×高”,由此我们就找到了计算圆柱侧面积的方法。
2.教学例3。(1)圆柱的表面积的含义。
教师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?
通过讨论、交流使学生明确:圆柱的表面积是指圆柱的侧面和两个底面的面积之和。
(2)计算圆柱的表面积。
①师:圆柱的表面展开后是什么样的?
组织学生将制作的圆柱模型展开,观察展开的面是由哪几部分组成的,并把它们都标出来。引导学生说出:圆柱的表面是由两个底面和一个侧面组成。
②组织学生自主探究、交流,该如何计算圆柱的表面积。指名发言,教师归纳:圆柱的表面积=圆柱的侧面积+两个底面积。
(3)巩固练习:教材第21页“做一做”。组织学生独立完成,请两名学生板演后集体订正。
答案:628cm2 【课堂作业】
完成教材第23页练习四的第2~6题。
第2题教师提醒学生用圆柱形的纸筒代替压路机前轮滚动一周,使学生看到所压路面的面积就是前轮的侧面积。
第3、4题是解决问题。先让学生弄清楚是求圆柱哪部分的面积,然后再计算,必要时,可通过教具或图形帮助学生直观理解。
第5题,对于有困难或争议大的,可用实物或模型直观演示。第6题,是实际测量、计算用料的题目,可以分组进行测量和计算。
答案:
第2题:3.14×1.2×2=7.536(m2)第3题:3.14×1.5×2.5=11.775(m2)第4题:3.14×3×2+3.14×(3÷2)2=25.905(m2)
第6题:长方体:800cm2 正方体:216dm2 圆柱:533.8cm2 【课堂小结】
通过这节课的学习,你有哪些收获? 【课后作业】
完成练习册中本课时的练习。
第2课时 圆柱的表面积(1)
1.此课习题的容量较大,教师应做到讲练结合,调节学生的学习兴趣。
2.圆柱的表面积的计算步骤较多,教师应注意引导学生先看清题意,再分析到底应求几个面的面积;后进生最好用分步列式,每一步要求说出求的是哪一部分的面积。
第3课时 圆柱的表面积(2)
【教学内容】
圆柱的表面积(2)(教材第22页例4)【教学目标】
能灵活运用求圆柱侧面积、表面积的相关知识,解决生活中的实际问题。【重点难点】
运用圆柱的表面积公式解决问题。【教学准备】
多媒体课件和圆柱体模型。
【复习导入】
前面我们已经学习了圆柱的表面积计算公式,有同学能说一说么?
指名学生回答。板书:
圆柱的表面积=圆柱的侧面积+两个底面面积 圆柱的侧面积=圆柱的底面周长×高 【新课讲授】 教学例4。
(1)出示例4。学生读题,明确已知条件:已知圆柱的高和底面直径,求表面积。
(2)求厨师帽所用的材料,需要注意:厨师帽没有下底面,说明它只有一个底面。
(3)指定两名学生板演,其他学生独立进行计算。教师巡视,注意看学生所算最后的得数是否正确。
指导学生做完后集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整十平方厘米,省略的个位上即使是4或比4小,都要向前一位进1,这种取近似值的方法叫做进一法。
(4)巩固练习。
①教材第22页“做一做”第1题。组织学生独立完成。②教材第22页第2题。请三名学生板演,其余同学做在草稿本上。
答案:①第22页“做一做”第1题:1.12m2,100.48dm2 ②第22页“做一做”第2题:376.8cm2 【课堂作业】
完成教材第23~24页练习四的第7~12题。
第7、8题,学生独立作业,老师巡视,个别不会的加以指导。第9题,提醒学生注意是上下底面分别留出了78.5cm2的口,应减去的部分是78.5×2=157(cm2)。
第10题,先让学生明确计算步骤,再分步列出算式,最后计算水桶的用料。
第11题,教师应先用教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体的表面积与圆柱的侧面积之和减去圆柱的一个底面积。提醒学生注意根据要求将计算结果化成以平方米为单位的数,并根据实际情况保留近似数。
第12题,是已知圆柱的侧面积和底面半径,求圆柱的高,部分学生有困难。教师辅导时可以提示学生列方程解答。
答案:
第8题:花布:3.14×18×80=4521.6(cm2)黄布:3.14×(18÷2)2×2=508.68(cm2)
第9题:3.14×20×30+3.14×(20÷2)2×2-78.5×2=2355(cm2)第10题:3.14×(12×)×12+3.14×(12×÷2)2=402.705(dm2)第11题:(1)12×12×2+16×12×4+3.14×12×55-3.14×(12÷2)2 =3015.36cm2≈0.31(m2)(2)50×0.31×30=465(元)第12题:188.4÷(2×3.14×2)=15(dm)【课堂小结】
通过这节课的学习,你有哪些收获? 【课后作业】
完成练习册中本课时的练习。
第3课时 圆柱的表面积(2)圆柱的表面积=圆柱的侧面积+两个底面面积
实际用料>计算用料 “进一法”→近似数
教师应注意培养学生良好的做题习惯,从列式到计算到结果以及注意单位等,要求学生要细心,特别是知道直径时,学生爱出错,会用直径直接平方,还有的学生平方也爱算错,总是弄成乘以2了。
第4课时 圆柱的体积(1)
【教学内容】
圆柱的体积(教材第25页例5)。【教学目标】
探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。
【重点难点】
1.掌握圆柱的体积公式,并能运用其解决简单实际问题。2.理解圆柱体积公式的推导过程。【教学准备】 推导圆柱体积公式的圆柱教具一套。
【复习导入】 1.口头回答。
(1)什么叫体积?怎样求长方体的体积?(2)怎样求圆的面积?圆的面积公式是什么?
(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。
2.引入新课。
我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?
教师板书:圆柱的体积(1)。【新课讲授】
1.教学圆柱体积公式的推导。(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。(3)启发学生思考、讨论:
①圆柱切开后可以拼成一个什么立体图形? 学生:近似的长方体。
②通过刚才的实验你发现了什么?
教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢? 学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。
(4)学生根据圆的面积公式推导过程,进行猜想: ①如果把圆柱的底面平均分成32份,拼成的形状是怎样的? ②如果把圆柱的底面平均分成64份,拼成的形状是怎样的? ③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?(5)启发学生说出:通过以上的观察,发现了什么? ①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。
(6)推导圆柱的体积公式。
①学生分组讨论:圆柱的体积怎样计算? ②学生汇报讨论结果,并说明理由。
教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。
教师板书:
2.教学补充例题。
(1)出示补充例题:一根圆柱形钢材,底面积是50cm2,高是2.1m。它的体积是多少?
(2)指名学生分别回答下面的问题: ①这道题已知什么?求什么? ②能不能根据公式直接计算? ③计算之前要注意什么?
学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。
(3)出示下面几种解答方案,让学生判断哪个是正确的。①50×2.1=105(cm3)答:它的体积是105cm3。②2.1m=210cm 50×210=10500(cm3)答:它的体积是10500cm3。
③50cm2=0.5m2 0.5×2.1=1.05(m3)答:它的体积是1.05m3。④50cm2=0.005m2
0.005×2.1=0.0105(m3)答:它的体积是0.0105m3。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、③种解答要说说错在什么地方。
(4)引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?
教师板书:V=πr2h。【课堂作业】
教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。
答案:“做一做”:1.6750(cm3)2.7.85m3 第1题:(从左往右)3.14×52×2=157(cm3)3.14×(4÷2)2×12=150.72(cm3)3.14×(8÷2)2×8=401.92(cm3)【课堂小结】
通过这节课的学习,你有什么收获?你有什么感受? 【课后作业】
完成练习册中本课时的练习。
第4课时 圆柱的体积(1)
1.“圆柱的体积”是学生在掌握了圆柱的基本特征以及长方体、正方体体积计算方法等基础上学习的。它是今后学习圆锥体积计算的基础。
2.采用小组合作学习,从而引发自主探究,最后获取知识的新方式来代替教师讲授的老模式,能取得事半功倍的效果。
3.推导公式时间过长,可能导致练习时间少,练习量少,要注意把控。
第5课时 圆柱的体积(2)
【教学内容】 圆柱的体积(2)【教学目标】
能运用圆柱的体积计算公式解决简单的实际问题。【重点难点】
容积计算和体积计算的异同,体积计算公式的灵活运用。【教学准备】 教具。
【复习导入】 口头回答。
教师:前面我们已经学习了圆柱体积的计算公式,有同学能说一说么?指名学生回答。板书:圆柱的体积=底面积×高V=Sh=πr2h 【新课讲授】 1.教学例6。
(1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?学生:应先知道杯子的容积。
(2)学生尝试完成例6。①杯子的底面积:
3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)②杯子的容积:50.24×10=502.4(cm3)=502.4(mL)(3)比较一下补充例题和例6有哪些相同的地方和不同的地方?
学生:相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积。
2.教学补充例题。
(1)出示补充例题:教材第26页“做一做”第1题。(2)指名学生回答下面问题:①这道题已知什么?求什么?②能不能根据公式直接计算?③计算结果是什么?学生:计算时既要分析已知条件和问题,还要注意统一结果单位,方便比较。
(3)教师评讲本题。【课堂作业】
教材第26页“做一做”第2题,第28页练习五第3、4题。第3题,其中的0.8m为多余条件,要注意指导学生审题,选择相关的条件解决问题。
第4题,是已知圆柱的体积和底面积,求圆柱的高,可以让学生列方程解答。
答案:“做一做”:
2.3.14×(0.4÷2)2×5÷0.02=31.4≈31(张)
第3题: 3.14×(3÷2)2×0.5×2=7.065(m3)=7.065(立方米)第4题:80÷16=5(cm)【课堂小结】
通过这节课的学习,你有什么收获和感受? 【课后作业】
完成练习册中本课时的练习。
第5课时 圆柱的体积(2)圆柱的体积=底面积×高
V=Sh=πr2h
本课时主要在讲解例题,教师应注意培养学生良好的做题习惯,先分析题意,弄清楚求什么,再列式。
第6课时解决问题
【教学内容】
解决问题。(教材第27页内容)【教学目标】
利用圆柱的相关知识解决问题。【重点难点】
求不规则圆柱体的体积。【教学准备】
多媒体课件、矿泉水瓶。
前面我们已经学习了圆柱的体积求法,今天我们来学习它的更多应用。
【情景导入】
我们之前在推导圆柱的体积公式时,是把它转化成近似的长方体,找到这个长方体与圆柱各部分的联系,由长方体的体积公式推导出了圆柱的体积公式。那么不规则圆柱的体积要怎么求呢?
今天老师带来了一个矿泉水瓶,它的标签没有了,要怎么通过计算得出它的容积呢?
【新课讲授】 1.教学例7。
2.学生读题,明确已知条件及问题。
学生:这个瓶子不是一个完整的圆柱,无法直接计算容积。教师:所以,我们要看看,能不能将这个瓶子转化成圆柱呢? 3.拿出水瓶,装上一部分水,按照例题中的方法做出讲解。引导学生思考。
解题思路:(1)瓶子里水的体积倒置后没变,水的体积加上18cm高圆柱的体积就是瓶子的容积。
(2)也就是把瓶子的容积转化成了两个圆柱的容积。【课堂作业】
完成教材第27页“做一做”。这类题的解题关键是明确瓶子正放和倒放时空余部分的容积是相等的。
答案:3.14×(6÷2)2×10=282.6(cm3)=282.6mL。【课堂小结】
通过这节课的学习,你有什么收获? 【课后作业】
完成练习册中本课时的练习。
第6课时 解决问题
1.转化成圆柱。
2.瓶子容积=圆柱1+圆柱2。
本课我们利用了体积不变的特性,把不规则图形转化成规则图形来计算,讲授时也可以联系其它的转化法来讲解。
第1课时 圆锥的认识
【教学内容】
圆锥的认识。(教材第31~32页例1及教材第35页练习六的第1、2题)。
【教学目标】
1.认识圆锥,掌握它的各部分名称及特征。2.认识圆锥的高,掌握测量圆锥的高的方法。
3.通过观察圆锥建立空间观念,培养学生的观察能力,以及从实物抽象到几何的能力。
【重点难点】
认识圆锥的高及高的测量方法。【教学准备】
圆柱纸筒,布,圆锥形的实物,圆锥模型,木板,多媒体课件,米(或沙子),三角板,长方形,半圆形硬纸片。
【情景导入】
“魔术”导入,引出课题。
1.出示一个圆柱,用这个圆柱外壳套住一个圆锥。教师:这是一个圆柱,谁能说说它有什么特征? 学生回答。
2.教师:现在老师用一块布把这个圆柱遮住(边说边演示)。如果这个圆柱的上底面慢慢的缩到圆心时,那么圆柱将变成怎样的呢?你能试着描述一下吗?
学生回答。
3.教师:现在看一看,老师能不能把这个圆柱变成你们说的那样。教师喊一、二、三,揭开遮在圆柱上面的布,露出一个圆锥。教师:像你们说的一样吗? 学生回答。
4.教师:看到这个课题,你想知道什么呢? 【新课讲授】 1.初步感知。电脑出示圆锥实物图。
教师:观察上面这些物体的形状有什么共同点?教师利用课件动画光点的闪烁,闪动实物图的轮廓,移走实物的模样,剩下图形的轮廓,抽象出圆锥的几何图形。
教师:这样的图形叫圆锥。在我们生活的周围,你们知道哪些物体是圆锥形的? 2.认识圆锥及各部分的名称。
(1)引导学生认真对照图形和模型观察。
请一名学生上台指出哪是圆锥的底面,哪是圆锥的侧面。师:我们已经知道了圆锥的底面和侧面,大家围绕下面几个问题同桌之间共同探讨。
①圆锥有几个底面?是什么形状的?
②用手摸一摸圆锥的侧面,你发现了什么? ③用手摸一摸圆锥的顶点,你有什么感觉?组织学生先独立思考,再在小组中相互交流,然后汇报。教师根据学生的汇报结果小结:圆锥有一个底面,是圆形的,有一个侧面,它是一个曲面,有一个顶点。
(2)怎样画圆锥的平面图呢?
示范:先画一个等腰三角形,它的底边是虚线,然后画出它的底面,底面要画成椭圆的,最后标出顶点、底面、圆心、底面半径r。(师在黑板上画出来)学生试着在自己的练习本上画。(3)认识圆锥的高。
师:圆锥的高在哪里?圆锥的高有几条?先让学生小组讨论交流汇报,然后全班讨论。
教师:圆锥的高就是指从圆锥的顶点到底面圆心的距离。(师在黑板上画出来)
那么它有几条高一看就知道了。(1条)(4)测量圆锥的高。
教师:由于圆锥的高在圆锥的里面,我们不能直接测量它的长度,怎样测量圆锥的高呢?
组织学生小组合作,交流汇报。课件演示测量过程,教师叙述: ①把圆锥的底面放平;②用一块木板水平的放在圆锥的顶点上面; ③竖直地量出平板和底面之间的距离。同桌相互配合,动手测量手中圆锥的高。教师:谁来展示一下你的方法,有其它的方法吗? 教师:如果是圆锥形的沙堆和粮堆,又怎样测量它的高呢?(学生合作实验,并相互交流)(5)大家喜欢制作玩具吗?下面我们一起制作一个玩具,好吗?拿出你准备的三角形、长方形硬纸片,快速转动,看一看它们是什么形状?(学生操作演示,小组内互相演示)
【课堂作业】
1.完成教材第32页的“做一做”。2.完成教材第35页练习六第1、2题。答案:
1.做一做:提示:亲自动手测量出圆锥的底面直径和高。2.第1题:蒙古包由圆柱和圆锥组成;墨水瓶由2个长方体和1个圆柱组成;建筑物由圆柱、圆锥、长方体组成。
【课堂小结】 通过这节课的学习,你有哪些收获?让学生畅所欲言后,教师再加以小结。
【课后作业】
完成练习册中本课时的练习。
第1课时 圆锥的认识
圆锥的底面是个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。
1.学生有了圆柱的知识与技能基础,认识圆锥不成问题。2.在动手合作中进行学习,这是学生非常喜欢的学习方式。3.学生的想象力已经初步形成,这对于学生认识图形很有帮助。
第2课时 圆锥的体积(1)
【教学内容】
圆锥的体积(1)(教材第33页例2)。【教学目标】
1.参与实验,从而推导出圆锥体积的计算公式,会运用圆锥的体积公式计算圆锥的体积。
2.培养学生初步的空间观念,让学生经历圆锥体积公式的推导过
第二篇:二年级下册数学教案和反思
二年级下册数学教案
1000以内数的认识
刘武英 一.教学内容:
1000以内数的认识(P68例1)
二、教学目的:
1.通过直观的数数使学生认识计数单位百、千,并掌握数数方法,掌握10个一百是一千。
2.初步理解相邻计数单位间的十进关系。
3.经历观察、实验、猜想、证明等数学活动过程,形成解决问题的一些基本策略。
4.初步认识数学与人类生活的密切联系,体验数学活动的成功与快乐。
三.教学重点:通过直观的数数使学生认识计数单位百、千,并掌握数数方法,掌握10个一百是一千。
四、教学难点:初步理解相邻计数单位间的十进关系。
五、教学准备:实物投影等。
六、教学设想:
本节课我从学生的发展和学习需求出发,创造性地使用教材。在整体设计上注意了以数数为主线,把数的组成、估计意识的培养及数学与生活的结合等方面穿插在一起进行教学。
1、充分关注学生已有的知识基础。数学教学要从学生已有的生活经验和知识基础来展开教学,所以我在课前活动中,先让学生在欣赏照片时,估计一二年级的人数、全校的人数,再让学生说说对于刚才说到的这些数,你知道些什么?让学生充分展示自己已有的知识基础。学生已经懂了的,我们就不必再教了。学生自己能探究的,我们就放手让学生在动手操作,合作交流中获取新知。
2、让学生进一步感受数是数出来的。
(1)给学生提供小棒, 以小组为单位数。经历单根数的、整
十、整百和几百几十几的数数过程,使学生感知并体验1000以内数的形成。(2)让学生获得清晰透彻的数的概念。
在整个教学中,力求引导学生在动手摆、动口数、说的基础上,自主探究、主动构建起1000以内数的概念。例如:数的组成。让学生在动手摆过程中看着实物说出一个数是由几个百、几个十和几个一组成的,再脱离实物,看数说数的组成。层层递进,由浅入深,让学生获得扎实透彻的概念。教学过程:
一、联系生活,构建数的模型。1.创设情境,提出问题。(1)出示“体育馆”的主题图
(2)师:猜一猜体育馆大约能坐多少人?
2、师:用100以内的数能表示吗? 由需要引出。(揭示课题:1000以内数的认识)
3、学习P68页主题图
学生独立数数,再进行全班交流。学生从一个一个地数,到10以后由10个10个地数,到100以后,一百一百地数,做适当地板书。如下:
板书:一个一个地数,10个一是一十。一十一十地数,10个十是一百。一百一百地数,十个一百是一千。
下面我们进行数数比赛,你会一个一个数到十?你会一十一十地数到一百吗?你会一百一百数到一千吗?
4.小结:关于数数,你们有什么新发现?讨论。(如果数的数量非常多,要继续往下数,怎样数比较快?)让学生会在操作中感悟到数较大的数也可以一百一百地数)
做一做(强调接近整百整千时拐弯处的数法)(1)、从一百九十八起,数到二百零六。(2)、从九百八十五数到一千。注意学困生的辅导。做一做
二、小结:本节课,你有什么收获?
二年级下册数学 1000以内数的教学反思
刘武英
一是对教材的把握,新教材将万以内数的认识分成两部分,其目的何在。课前我甚至想过仍然将这两部分合起来上。但是,我想那些专家这样编排的用意何在。发展学生的数感,是课程标准提出的一个重要目标。所以可能原因就在于此。
二是怎样选择合适的生活情境,让数数与现实的生活情境联系起来。虽然说学生对1000以内的大数有所接触,但是很少。
数学课程标准指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程”。据此,本节课主要采用活动教学法。
1、将教学内容活动化,让学生在做中学。
首先是猜一猜体育馆人数的活动;接下来是小组合作数小棒的活动,给学生一大盒小棒,在猜测的基础上,将“到底有多少根小棒”这一问题交给学生,让学生自己在数小棒的操作活动中自己去体验、感悟,从而发现数数的方法,体会十进关系。然后是议一议的活动,让学生交流:关于数数,你有什么新的发现?最后是练一练的活动,包括接一接、数一数、说一说、估一估、填一填等一系列活动,让学生在活动中完成了新知的应用与拓展。
2、采用小组合作学习,让学生在交往互动中学。
本节课采用小组合作学习的形式,让学生小组合作数小棒,共同决策,集体解决问题,学生在小组中可以自由学习、充分交往,小组中的每个同学都有操作、发言的机会。
3、创设情境,让学生在轻松愉快的氛围中学。
兴趣是最好的老师。根据低年级儿童的特点,本节课创设了企鹅博士考大家、登城堡拿礼物的故事情境,力图引领孩子们走进一个充满童趣的童话世界,让他们学得轻松愉快又积极主动。
第三篇:人教六年级数学教案
黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
第一单元百分数(二)1.百分数的应用(二)
课题一:利息
教学内容:教科书第1—2页及“做一做”中的题目,练习一的第1、2题。
教学目的:使学生了解有关利息的初步知识,知道“本金”、“利息”、“利率”的含意,会利用利息的计算公式进行一些有关利息的简单计算。
教具准备:将例题写在小黑板上,活期储蓄、定期储蓄的存款凭条和取款凭条。
教学过程:
一、导入
教师提问:
“如果你家中有一些暂时不用的钱,将怎么办?”让几个学生说一说,当有学生说要把暂时不用的钱存入银行时,接着提问:
“为什么要把钱存入银行呢?”多让几个学生发表意见。
教师肯定学生的回答,再指出:把暂时不用的钱存入银行有两个好处:一是国家可以把这些钱集中起来,用在建设上,所以说储蓄可以支援国家建设;二是参加储蓄的人用钱更加安全和有计划,还可以得到利息,所以说储蓄对个人也有好处。
“你们知道利息是怎样计算的吗?”
教师:今天我们就来学习一些有关利息的知识。
板书课题:“利息”
二、新课
出示例题:小丽1998年1月1日把100元钱存入银行,存定期一年。到1999年1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的5.67元,共105.67元。
先请学生读题,然后教师再说明:题目中有“存定期一年”表示什么呢?一般来讲。储蓄主要分定期存款、活期存款、大额存款等方式。所谓活期存款是指储户可以随时提取的一种储蓄方式,定期存款是有一定期限的一种存款方式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年、八年的等等。小丽存的是“定期—年”,即小丽在银行存的100元在一般情况下要在银行存一年;如果有特殊情况也可以提前提取。
教师:在银行储蓄要弄清三个概念:本金、利息和利率。小丽在银行存入100元,也就是说她的本金是100元。板书:“存入银行的钱叫做本金”
存款到期时,小丽到银行取回105.67元,银行多付给小丽5.67元,这是100元定期一年的存款所得到的利息。板书:“取款时银行多付的钱叫做利息”
这5.67元的利息是根据什么给小丽的呢?是银行的工作人员根据利率计算出来的。板书:“利率就是利息与本金的比值”这是由银行规定的。利率有按年计算的,也有按月计算的。小丽存的是定期一年的存款,年利率是5.67%,也就是说如果存100元,在银行存一年可得100元的5.67%的利息,即5.67元的利息,再加上本金100元共105.67元。
根据国家经济的发展变化,银行存款的利率有时会有所调整。1997年10月中国工商银行公布的定期整存整取一年期的年利率是5.67%,二年期的年利率是5.94%.三年期的年利率是6.21%。五年期的年利率是6.66%。
按照上面的利率,如果小丽存300元钱定期存款二年,到期时她应得利息多少
元?提问:
“二年期的定期整存整取的年利率是5.94%是什么意思?”(到期取款时每100元可得5.94元的利息。)“小丽的本金是300元,到期时她每一年应得利息多少元?”(300元的5.94%。)学生口述,教师板书:300×5.94%。
-2黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
1.订正第3题时,教师可以提问:你知道国家建设债券是什么吗?学生发表意见后,教师可以简要地向学生说明:国家建设债券是国家为了发展国民经济建设,发行的一种证券。这种债券跟定期存款一样也是有时间期限和利率的。计算债券的利息 的方法和储蓄存款利息的算法是一样的。
再让学生说一说是怎样做的,教师板书算式: 1500×7.11%×3十1500 2.订正第4题时,可以提问:赵英去年11月1日存入银行800元钱,定期2年。到明年11月1日取出时,一共存了几年?到期了吗?使学生明白,从去年的11月1日到明年的11月1日正好是两年,所以解答这道题的算式应是:800×5.94%×2十800 3.订正第6题时,教师可以提问:
“题目的问题是‘增长百分之几?’,它实际要求的是什么?是以哪个量为单位‘1’的?”(实际求的是1997年比1996年增加的存款数是1996年存款数的百分之几,是以1996年的存款为单位“1”的。)所以解答这道题的算式应是:32÷(147—32)×100%
三、提前做完上面题目学有余力的学生,可以做练习一的第7*题
教师可以这样引导学生:先计算出两种储蓄办法各得到多少利息,再进行比较。用第一种储蓄办法,利息是500×5.94%×2=59.4(元);用第二种储蓄办法,第一年后可以得到本息合计500×5.67%×l十500=528.35(元),把528.35元再存入银行第二年的本息合计528.35×5.67%×l十528.35=558.31(元),减去500元,两年共得利息58.31元。所以采取第一种方法得到的利息多一些。
四、作业
练习一的第5题。
课题三:成数和折扣* 教学内容:教科书第4页例1和第5页例2,完成第5页“做一做”中的题目及练习二的习题。
教学目的:使学生理解成数的意义,知道它在实际生产生活中的简单应用,会进行一些简单计算。
教学过程
一、导入
教师;前面我们学习了百分数的一些应用,像 计算发芽率,出勤率,成活率,还有计算储蓄的利息等。今天我们来学习“成数”,板书课题;成数
成数常常用来说明农业的收成,比如说今年的小麦比去上增产二成,苹果比去上减产一成,这“二成”和“一成”是用来说明收 成情况的。
说明并板书;“一成”就是十分之一,改写成百分数就是10%;“二成”就是十分之二,改写成百分数就是20%。
小麦比去年增产二成,也就是小麦比去年增产十分之二,即百分之二十。下面让学生回答:
“苹果比去年减产一成,表示什么意思?”(表示苹果比去年减产十分之一,即百分之十。)“油菜去年比前年增产三成,表示什么意思?”(表示油菜去年比前年增产十分之三,即百分之三十。)
二、新课
1.教学例1。
出示例1,让学生读题。提问:
“去年比前年多收了二成五,表示什么意思?”(多收了二成五,表示多收了25%。)
-4黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
一、复习利息、成数等概念 1.做“整理和复习”第1题。
请一名学生读题。另请两名学生加以回答,教师补充完整。
提问:“同学们准备用自己的存款做些什么事情呢?”让学生自由讨论,教师及时表扬那些准备用自己存款做些有意义的事情的学生,适时进行勤俭节约的教育。2.做“整理和复习”第2题。
请一名学生读题。
提问:“什么叫本金、利息、利率?利息的意义是什么?”
“利息是怎样计算的?”
让几名学生回答.然后将本金、利息、利率的概念用幻灯显示,请学生齐读一遍。板书利息的计算公式:利息=本金×利率×时间; 3.做“整理和复习”第4题。
请一名学生读题:另请两名学生分别对两个问题加以回答。4.做练习三的第3、4题。
把全体学生分或两组.一组做第3题,另一组做第4题,答案直接写在课堂练习
本上:教师巡视.及时纠正学生中间出现的错误。最后进行集体订正。
二、复习有关利息、成数的应用题 1.做“整理和复习”第3题:
请一名学生读题。
提问:“要求利息,必须知道哪些数据?”(引导学生在题中找出本金、利率、时间 各是多少。)“计算利息的公式是什么?”(引导学生看黑板上的公式。)。
让一名学生到黑板前做,其余学生做在练习本上。教师一边巡视,一边及时纠正学生中出现的错误。最后集体订正。2.做练习三的第1题。
请一名学生读题。教师无需用任何提示,直接让学生计算利息。教师行间巡视,然后集体订正:
小结:我们国家还有许多贫困地区的儿童因为家庭困难而失学,许多小朋友都像小英一样把零用钱节省下来存入银行,既支援了国家建设,又可以把利息捐献给“希望工程”。我们也应该向他们学习,平时勤俭节约,不乱花钱,为贫困地区的儿童献一份爱心。
3.做练习三的第2题。
请一名学生读题。
教师说明:购买建设债券是支援国家建设的另一种方式,和储蓄在实质上是一样的。只是债券的利率一般高于定期储蓄。
抽取两名学生到黑板前做,其余学生做在课堂练习本上。教师巡视,等全体学生做完以后,集体订正。尤其要提醒学生注意题目要求的是“到期时一共能取出多少元?”所以在求出利息以后,不要忘记把本金加上。4.做“整理和复习”第5题。
请一名学生读题。
提问:“一成五是多少?”
“这道题里单位‘1’是谁?”
“可以用什么方法计算?哪种方法更简便?”(方程解法和算术解法)分别请两名学生回答这两个问题。
请两名学生到黑板前做,分别用方程解法和算术解法进行解答,其余学生做在课堂
-6黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
让学生讨论这道题的解题思路。等学生讨论完以后,教师抽取几名学生回答并进行总结:这道题可以有两种解答思路。一种思路是先按七折算出买这三本书花多少钱,再求出可以节省多少钱,在这种思路中,可以先算出这三本书总钱数的七折,再用总钱数减去它,也可以先算出每本书钱数的七折,再分别计算出每本书节省的钱数,然后求出节省的总钱数:另一种思路是直接计算这三本书节省30%的钱,在这种思路中,既可以先分别计算出每本书节省的钱数,再求出节省的总钱数,也可以用总钱数乘以30%求得结果。
请学生任选一种方法,做在课堂练习本上。教师巡视,及时纠正学生出现的错误,最后进行集体订正;
三、作业
练习三的第8题。学有余力的学生可以继续完成练习三的第11*题和思考题。
第二单元比例
1.比例的意义和基本性质 课题一:比例的意义和基本性质
教学内容:教科书第9—10页比例的意义和基本性质.练习四的第1—3题。教学目的:使学生理解比例的意义和基本性质。教学过程:
一、教学比例的意义 1.复习。
(1)教师:请同学们回忆一下上学期我们学过的比的知识.谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。教师把学生举的例子板书出来,并注明比的各部分的名称。
(2)教师:我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗? 教师板书出下面几组比,让学生求出它们的比值。
12:16 :1 4·5:2.7 10:6 学生求出各比的比值后,再提 “请同学们观察一下,哪两个比的比值相等?”(4.5:2.7的比值和10:6的比值相等。)教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢? 这就是这节课我们要学习的内容。(板书课题:比例的意义)2.教学比例的意义。(1)出示例1:“一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。”指名学生读题。
教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问边填写表格。)
“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答。
板书:第一次所行驶的路程和时间的比是80:2 第二次所行驶的路程和时间的比是200:5 然后让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40,200:5=40。让学生观察这两个比的比值。再提问:
“你们发现了什么?”(这两个比的比值都是40。)
-8黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:
两个外项的积是80×5=400 两个内项的积是2×200=400 “你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×20“是不是所有的比例式都是这样的呢?”让学生分组计算前面判断过的比例式。
“通过计算,大家发现所有的比例式都有这个共同的规律。谁能用一句话把这个规律说出来?”可多让一些学生说,说得不完整也没关系.让后说的同学在先说的同学的基础上说得更完整。
最后教师归纳并板书出:在比例里.两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。
“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80;2=200:5)教师边问边改写成: =
“这个比例的外项是哪两个数呢?内项呢?”
“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式.等号两 端的分子和分母分别交叉相乘的积怎么样?”边问边画出交叉线,如: =
学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。板书: = 80×5=2×200 3.巩固练习。
教师:前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。(1)应用比例的基本性质判断3:4和6:8能不能组成比例。
教师:我们可以这样想:先假设3:4和6:8可以组成比例。再算出两个外项的积(板书:两个外项的积:3×8=:1)和两个内项的积(板书:两个内项的积:4×6=24)。因为3×8=4×6(板书出来).也就是说两个外项的积等于两个内项的积,所以 3:4和6:8可以组成比例。(边说边板书:3:4=6:8)(2)做第11页“做一做”的第1题。
三、小结
教师:通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
四、作业
练习四的第2题。
课题二:解比例
教学内容:教科书第11页解比例的内容,练习四的第4—7题。
教学目的:使学生学会解比例的方法,进一步理解和掌握比例的基本性质。教学过程:
一、导人新课
教师:上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识.这节课我们要学习解比例。(板书课题)
二、新课
教师:什么叫做解比例呢?我们知道比例共有四项,如果知道其中的任何三项,就
-10黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
两个数就应作为比例的外项.世可以推出比例式。然后让学生自己写出比例式。写完后,教师板书出来。
如果把3、40作为外项,有下面这些比例式:
3:8=15:40 40:15=8:3 3:15=8:40 40:8=15:3 如果把3、40作为内项,有下面这些比例式:
15:3=40:8 8:40=3:15 15:40=3:8 8:3=40:15 可能有的学生写比例式时是按照数的排列规律来写的,有些可能没什么规律性。
学生做完后,可以通过讨论,使学生明确要按一定的顺序来写才能写全所有的比例式。
课题三:比例尺
教学内容:教科书第14一16页的例4一例6,练习五的第l一3题。
教学目的:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。
教具准备:教师准备一些比例尺不同的地图或本校、本地的平面图。教学过程:
一、复习
1,1厘米=()毫米 1分米=()厘米 1米=()分米 l千米=()米
2.20米=()厘米 50千米=()厘米 30厘米=()分米 60毫米=()厘米
二、新课
教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能 吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数。再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。
1.教学比例尺的意义。(1)教学例4。
出示例4:设计一座厂房,在平面图上用10厘米的距离表示地面上10米的距离。求图上距离和实际距离的比。
让学生读题。指名回答:
“这道题告诉我们什么?”(在平面图上用10厘米的距离表示地面上10米的距离。)“要我们做什么?”(求图上距离和实际距离的比。)板书:图上距离:实际距离
“图上距离知道吗?实际距离也知道吗?各是多少?”继续板书如下:
图上距离:实际距离
10厘米 10米
“10厘米和10米的单位相同吗?能直接化简吗?”
教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。
“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作厘米后实际距离仍
-12黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
(2)巩固练习。
做第1;页上的I;做一做”。先让学生说出图中的比例尺是多少。表示什么意思,再用直尺量出图中河西村与汽车站间的距离.然后计算出实际距离:集体订正时,要 注意检查学生是否把实际距离化成了千米.(3)教学例 5 出示例6;一长方形操场,长110米,宽90米,把它画在比例尺是 的图纸上,长和宽各应画多少厘米? 指名读题并说出题目告诉了什么,求什么。(告诉了操场的长和宽的实际距离和比例尺,求长和宽的图上距离。)教师:我们先来求长的图上距离。长的图上距离不知道,应设为x。(板书:解:设长应画X厘米。)长的实际距离是多少?它和图上距离的单位相同吗?怎么办?(板书:)比例尺是多少?(板书:=)然后让学生求x的值,并说出求解过程。教师板书出来。
“这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用y来表示。”板书:设宽应画y厘米。让学生把这道题做完。最后教师写出这道题的答。
三、作业
练习五的第1—3题。
第3题,让学生先想想比例尺 表示的意思。(1厘米的图上距离相当于100厘米的实际距离。)然后再量出图中所示的宽和高,并计算出实际的宽和高各是多少。集体订正时。要让学生说说计算出的实际的宽和高的单位是什么。
课题四:线段比例尺
教学内容:教科书第16页上的线段比例尺,练习五的第4—9题。
教学目的:使学生理解线段比例尺的含义,会根据线段比例尺求图上距离或实际距离。教具准备:教师准备一些线段比例尺的地图或平面图。教学过程:
—、导人新课
教师:上节课我们学习了一些比例尺的知识,我们学过的比例尺都是用数值来标明的,如比例尺1:10000就表示图上距离是l厘米实际距离就是10000厘米,像这样的比例尺叫做数值比例尺。除了数值比例尺外,还有线段比例尺。什么是线段比例 尺呢:这就是我们这节课要学习的内容。(板书课题)
二、新课
教师:线段比例尺是在图上附有一条注有数量的线段。用来表示和地面上相对应的实际距离。同学们可以翻开教科书第16页.看右下角有一幅地图。地图的下面就 有一条线段比例尺。它上面有0、50和100几个数,还注明了长度单位“千米”。这些数和单位表示什么意思呢?大家量一量从0到50这段线段有多长。(1厘米。)从50到100呢?(也是1厘米。)从0到50就表示地图上1厘米的距离相当于地面上50千米的实际距离。从0到100就表示地图上2厘米的距离相当于地面上100千米的实际距 离。
然后教师问:
l“如果知道了两个城市之间的图上距离,你能不能计算出这两个城市之间的实际
-14黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
二、导人新课
教师:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系。(板书课题:正比例的意义)
三、新课
1.教学例1。
用小黑板出示例1:一列火车行驶的时间和所行的路程如下表: 提问:
“谁来讲讲例1的意思?”(火车1小时行驶60千米,2小时行驶120千米„„)“表中有哪几种量?”
“当时间是1小时,路程是多少?当时间是2小时,路程又是多少?„„” “这说明时间这种量变化了,路程这种量怎么样了?”(也变化了。)教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量。(板书:两种相关联的量)“时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?”
教师指着表格:我们从左往右观察(边讲边在表格上画箭头),时间扩大2倍,对应的路程也扩大2倍3时间扩大3倍,对应的路程也扩大3倍„„从右往左观察(边讲边在表格上画反方向的箭头),时间缩小8倍,对应的路程也缩小8倍;时间缩小7倍,对应的路程也缩小7倍„„时间缩小2倍,对应的路程也缩小2倍。通过观察,我们发现路程是随着时间的变化而变化的。时间扩大路程也扩大,时间缩小路程也缩小。它们扩大、缩小的规律是怎么样的呢? 让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值。教师板书出来: =60. =60,=60„„ 让学生双察这些比和它们的比值,看有什么规律。教师板书:相对应的两个数的比值(也就是商)一定。然后教师指着 =60,=60 = 60„„问:“比值60,实际上是火车的什么:你能将这些式子所表示的意义写成一个关系式吗?板书: =速度(—定)教师小结:通过刚才的观察和分析.我们知道路程和时间是两种什么样的量?(两种相关联的量。)路程和时间这两种量的变化规律是什么呢?(路程和时间的比的比值(速度)总是一定的。)2.教学例2。
出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。让学生观察上表,并回答下面的问题:(1)表中有哪两种量?(2)米数扩大,总价怎样?米数缩小,总价怎样?(3)相对应的总价和米数的比各是多少?比值是多少?
当学生回答完第二个问题后,教师板书:
=3.1,=3.1,=3.1„„
然后进一步问:
“这个比值实际上是什么?你能用一个关系式表.示它们的关系吗?”板书: =单价(一定)教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价也随着扩大;米数缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和米数的比的比值总是一定的。
-16黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
教学过程:
一、复习
1.让学生说说什么是成正比例的量: 2.用投影片出示下面的题:
(1)下面各题中哪两种量成正比例?为什么? ①笔记本单价一定,数量和总价:
⑨汽车行驶速度一定.行驶的路程和时间。②工作效率一定.’工作时间和工作总量。①一袋大米的重量一定.吃了的和剩下的。
(2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。在什么条件下,其中两种量成正比例?
二、导入新课 教师:如果加工零件总数一定。每小时加工数和加工时间会成什么样的变化.关系怎样?就是我们这节课要学习的内容。
三、新课
1.教学例4。
出示例4;丰机械厂加工一批机器零件。每小时加工的数量和所需的加工时间如下表。让学生观察这个表,然后每四人一组讨论下面的问题:(1)表中有哪两种量?(2)所需的加工时间怎样随着每小时加工的个数变化?(3)每两个相对应的数的乘积各是多少? 学生分组讨论后集中发言。然后每个小组选代表回答上面的问题。随着学生的回答,教师板书如下:每小时加工数加工时间
× 60 =600。30 × 20 =600。40 × 15 =600,“这个积600。实际上是什么?”在“加工时间”后面板书:零件总数 “积一定,就说明零件总数怎样?”在零件总数后面板书:(一定)“每小时加工数、加工时间和零件总数这三种量有什么关系呢?”
学生回答后,教师小结:通过刚才的观察分析.我门可以看出。表中每小时加工零件数和所需的加工时间是两种相关联的量。所需的加工时间是随着每小时加工数量的变化而变化的,每小时加工的数量扩大。所需的加工时间反而缩小3每小时加工的数量缩小,所需的加工的时间反而扩大。它们扩大、缩小的规律是:每小时加工的零件的数量和所需的加工时间的积都等于600,即总是一定的:我们把这种关系写成式子就是:每小时加工数×加工的时间=零件总数(一定)。2.教学例5。
用小黑板出示例5用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系呢?请你先填写下表。
(1)理解题意,填写装订本数。
“谁能说说表中第一栏数据的意思?”(用600页纸装订练习本,如果每本练习本15页,可以装订40本。)“这40本是怎么计算出来的?”(用600÷15)“如果每本练习本是20页,你能计算出可以装订多少这样的练习本吗?如果每本是25页呢?„„请你把计算出来的本数填在教科书第23页的表中。”教师把学生报出的数据填在黑板上的表中。
-18黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
点和不同点吗?试试看。组织讨论,教师归纳并板书:
四、巩固练习
1.做教科书第28页“做一做”中的题目。让学生自己填,并说一说为什么。2.做练习七的第1—2题。
教师巡视,个别辅导,最后订正。
五、小结
教师:请同学们说说正比例和反比例关系有什么相同点和不同点?
课题四:正比例和反比例的混台练习
教学内容:练习七的第3—7题。
教学目的:通过混合练习,加深学生对正比例和反比例的意义的理解,提高判断能力。教学过程:
一、引入
教师:前面我们学习了正比例和反比例的意义.上节课我们又把它们进行了比较,你们会根据正比例和反比例的意义,比较熟练地判断两种相关联的量是成正比例还是成反比例吗?
二、课堂练习
1.分析、研究第3题。
让学生先说出长方形的长、宽、面积三个量中.其中一个量与另外两个量的关系,教师板书出来:长×宽=面积
= 长 =宽 提问:
“当面积一定时,长和宽成什么比例关系?” “当长一定时,面积和宽成什么比例关系?” “当宽一定时,面积和长成什么比例关系?”
教师:通过上面的分析,我们知道:要判断三种相关联的量在什么条件下组成哪种比例关系,我们可以先写出它们中的一种量与另外两种量的关系,再进行分析,比如,当我们写出 = 宽,我们就可以根据正比例的意义进行推断,当宽一定时,面积和长成正比例关系。以后你们遇到类似的题也可以仿照这样的办法进行分析推理。
2.第4题,让学生仿照第3题的方法做。订正后,教师板书如下:
每次运货吨数×运货次数=运货的总吨数(一定)每次运货吨数 与运货次数=运货次数(一定)成反比例关 系。运货的总吨=每次运货吨数(一定)数与运货次 数成正比例 关系
3.第5题,让学生独立做,教师巡视,注意个别辅导。
4.第6题,先让学生自己判断,然后指名回答,第(1)小题成反比例,第(2)、(4)、(6)
-20黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
然后让学生自己解答。解答之后,让学生把x的值350代入原等式(即方程),看等式能不能成立。
(3)改变题目的条件和问题,让学生解答。教师:如果把这道题的第三个条件和问题改成“已知公路长350米,需要行驶多少小时?”该怎样解答?(把例1的第三个条件和问题划上线,再出示改变后的应用题。)让学生列式解答。订正时,回答:
“改编后的题和例1有什么联系和区别?”使学生明确:例1的条件和问题改变以后,题中成正比例的关系仍没变,解答的方法也没有改变,只是要设需要行驶的小时数为x,列出的等式是 =
2.教学例2。
出示例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果要4小时到达,每小时需要行驶多少千米? 指名学生读题,说出已知条件和问题。再让学生用以前学过的方法解答。—解答后,说说分析解答的过程。教师板书:
70×5÷4 =350÷4 =87,5(千米)进一步提出:
“这道题你能用比例的知识解答吗?”
“想一想,题中有哪两个相关联的量?它们成什么比例关系?为什么?”使学生明确:因为这道题的路程是一定的,根据反比例的意义,速度和时间成反比例关系。
“汽车两次行驶的速度和时间的什么是相等的?”
“你能列出等式吗?设谁为X?”
学生回答后,教师板书:解:设每小时需要行驶X千米。
4X=70×5 让学生自己求出X,并进行检验。随后,教师提出:
“如果把这道题的第三个条件和问题改成‘已知每小时行驶87.5千米,要求需要多少小时到达?’该怎样解答?”
让学生解答改编后的应用题,集体订正。
教师:比较一下改编后的题目和例2,看一看它们有什么联系和区别? 通过对比,使学生明确,例2的条件和问题改变以后,题中成反比例的关系仍没有变。解答的方法也没有变。只是要设需要行驶的小时数为x,列出的等式是87.5×X=70×5。
三、巩固练习
1.做第32页“做一做”的题目。
让学生直接用比例知识解答。2.做练习八的第1—4题。
让学生独立做,教师注意帮助有困难的学生,最后集体订正。
四、小结
教师:今天我们学习的是如何用正比例和反比例的知识来解答以前学过的应用题。
-22黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
教具准备:投影仪、投影片、小黑板。教学过程:
一、复习;;比”和“比例” 1.复习整理。
教师:这一单元我们学习了比例的知识,请同学们举例说一说什么叫做比?什么叫做比例?比和比例有什么区别? 随着学生的回答,教师板书如下表。
指出:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等,有四项:
2.练习。
用小黑板出示下面的题让学生完成。
(1)六年级一班有男生24人,女生20人。六年级一斑男生和女生人数的最简单的整数比是()。
(2)六年级一班男生和女生人数的比是6:5。男生人数和全班人数的比是(),女生人数和全班人数的比是()。
(3)六年级一班男生和女生人数的比是6:5。男生有24入,女生有()人。
二、复习解比例 1.完成第35页的第2题。
指名回答什么叫解比例,解比例要根据什么性质。
接着以 : =l :x为例,复习解比例的过程,使学生进一步明确:在解比例时,如果有带分数,要先把带分数化成假分数,然后利用比例的基本性质,把比例式变为含有未知数的等式来解。
然后让学生完成第2题的其余习题。
三、复习正比例、反比例
用投影片逐一出示下面问题,让学生回答。1.什么叫成正比例的量和正比例关系? 2.什么叫成反比例的量和反比例关系? 3,正比例和反比例有什么联系和区别? 学生回答,教师填写小黑板上的表。
然后教师出示下面两个表,让学生根据表中两种量中相对应的数的关系,判断它们成什么比例,并说明理由。
使学生明确:要判断两个相关联的量是成正比例还是反比例,要看相对应的两个数的商或积是不是一定,如果积一定说明这两个量成反比例,如果商一定说明这两个量成正比例。如第二个表,通过计算,可以看出上、下两个相对应的数的商一定,也就是说,这个三角形的高的 一定,因而高也一定,所以三角形的面积与底边成正比 例。
-24黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
指名学生读题,并说出这道题的两个相关联的量成什么比例,当学生说出每天平整的公顷数与时间成反比例后,让学生完成这道题。教师板书出解答过程。3.总结。
教师:像上面这样的题在解答时,先要判断两个相关联的量成什么比例,然后列出含有未知数x的等式,再进行解答。
二、课堂练习
完成练习九的第4—6题。
1。第4题,先说明一下,农药是药液和水合起来的重量,再提示:第(1)小题。要求配制这种农药750.5千克,需要药液与水多少千克,要先算出农药和药液的比、农药和水的比。
2.第5题,让学生说一说根据什么来判断方砖的面积与方砖的块数成什么比例。3.第6题,让学生独立完成,集体订正时,说说解答思路。
第三单元圆柱、圆锥和球
1.圆柱
课题一:圆柱的认识
教学内容:教科书第38—39页的内容,完成第39页上的“做一做”和练习十的第 1题。
教学目的:使学生认识圆柱的特征,能看懂圆柱的平面图;认识圆柱侧面的展开图。
教具准备:教师准备长方体形和正方体形的物体各一个,及多个圆柱形的物体(如罐头盒、茶叶筒、药盒、药瓶、纸盒等);让学生也收集几个圆柱形的盒子,同时让学生将教科书第153页上的图沿边剪下来。
教学过程:
一、复习
1.已知圆的半径或直径,怎样计算圆的周长? 指名学生回答,使学生熟悉圆的周长公式:C=2 Π r或C= Π D。2.求下面各圆的周长(口算)。(1)半径是1米(2)直径是3厘米(3)半径是2分米(4)直径是5分米
教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确。
二、导入新课
教师手中先后拿一个长方体形的物体和正方体形的物体,提问:我手里拿的物体是什么形状的?他们有什么特征? 由此引导学生复习长方体和正方体的一些特征。
教师出示几个圆柱形的物体,“大家注意了,你们看看这些物体跟长方体、正方体的形状一样吗?”
学生:不一样。
教师:请大家拿出自己准备好的跟老师一样的物体,看一看,摸一摸,你们感觉它们与长方体有什么不一样?
三、新课
1.圆柱的认识。
让学生拿着圆柱形的物体观察和摆弄后,指定几名学生说出自己观察的结果。从而使学生认识到长方体、正方体都是由平面围成的立体图形;而圆柱则有一个曲面,有两个面是圆,从上到下一样粗细,等等。
-26黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
1.做第39页“做一做”的第2题。
可以将教科书上的图用投影仪放大或画在小黑板上,指名学生指给大家看,其他学生评月是否正确。
2.做第39页“做一做”的第3题。
让学生拿出课前准备好的模型纸样,先做成圆柱,然后让学生试着独立量出它的底面直径和高。教师行间巡视,对有困难的学生及时辅导。
量完后,可以让学生说出自己是怎样量的。3.做练习十的第1题。
指名学生回答,引导学生利用圆柱的特征来解释。
课题二:圆柱的表面积
教学内容:教科书第40—41页的例l一例3,完成第41页的“做一做”和练习十的第2—5题。
教学目的:使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。并根据圆柱的表面积与侧面积的关系使学生学会运用所学的知识解决简单的实际问题。
教具准备:圆柱形的物体,圆柱侧面的展开图(仿照教科书第39页的图制作)。教学过程;
一、复习
1.指名学生说出圆柱的特征。2.口头回答下面问题:
(1)一个圆形花池,直径是5米,周长是多少?(2)长方形的面积怎样计算? 学生回答后板书:长方形的面积=长×宽
二、导入新课
教师:上节课我们认识了圆柱和圆柱的侧面展开图。请大家想一想,圆柱侧面的展开图是什么图形? 教师出示上节课实验用的罐头盒,引导学生回忆实验过程:沿着罐头盒的一条高剪开商标纸,再打开,展开在黑板上,得到的是一个长方形。
教师:这个展开后的长方形与圆柱有什么关系? 学生:这个长方形的长等于圆柱的周长,长方形的宽等于圆往的高。
教师:那么,圆柱侧面积应该怎样计算呢?今天我们就来学习有关圆柱的侧面积和表面积的计算。
三、新课
1,圆柱的侧面积。
板书课题:圆柱的侧面积。
教师:圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
教师边叙述边摸着圆柱的侧面演示给学生看,指出侧.面的大小就是圆柱的侧面积。
教师:从上面的实验我们可以看出,这个展开后的长方形的面积和因拄的侧面积有什么关系呢? 教师出示圆柱的侧面展开图,让学生观察很容易看到这个长方形的面积等于圆柱的例面积。
教师:那么,圆柱的侧面积应该怎样计算呢? 引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道: 圆柱的侧面积=底面周长×高
-28黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
6.教学例3。出示例3。
教师:这道题已知什么?求什么? 学生:己知圆柱形水桶的高是24厘米,底面直径是20厘米。求做这个水桶要用多少铁皮。
教师:这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,会有哪几部分? 使学生明白:水桶没有盖,说明它只有一个底面。
教师:要计算做这个水桶需要多少铁皮,应该分哪几步? 指名学生回答后,指定两名学生板演,其他学生独立进行计算。教师行间巡视,注意察看最后的得数是否计算正确。
做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取舍的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五人法取近似值。这道题要保留整百平方厘米,省赂的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。7.小结。
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
四、巩固练习
1.做第41页“做一做”的第1题。
教师:这道题已知什么?应该怎样求侧面积? 使学生明白可以直接用底面周长乘以高就可以得到侧面积。
让学生做在练习本上,做完后集体订正。2.做第41页;做一做”的第2题。
让学生独立做在练习本上,教师行间巡视,做完后集体订正。
五、作业
1.完成第42页练习十的第2一;题。
(1)第2、3题,是分别求圆柱的例面积和表面积,要求学生正确选用公式,认真仔细地计算。
(2)第4题,圆柱形沼气池·的形状和特点要向学生说明(特别是城市里的小学生),把它转化为数学问题,要弄清求的是圆柱哪些部分的面积。
(3)第5题,是先实际测量,再计算的题目,可以分组进行测量和计算,每组要量的茶叶筒的大小可以是不一样的。
2.让学有余力的学生做练习十的第6‘、7‘题。
第6·题.是已知圆柱的侧面积和底面半径,求圆柱的高。这样就要把求圆柱的 侧面积的运算顺序颠倒过来。教师可以提示学生列方程解答。
第7‘题,是求一个没有盖的圆柱形铁皮水桶的用料:S=ΠR十2ΠH≈63.59十 339.12=402.71≈410(平方分米)
课题三:圆柱的体积计算公式的推导
教学内容:教科书第43页的圆柱体积公式的推导和例4,完成第44页“做一做”的第1题和练习十一的第1—2题。
-30黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
教师:大家再看看整个圆柱,它又被拼成了什么形状?(有点接近长方体:)然后教师指出:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
教师:把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求? 引导学生想到由于体积没有发生变化,所以可以通过求切拼后的长方体的体积来求圆柱的体积。
教师:“而长方体的体积等于什么?”让全斑学生齐答,教师接着板书:“长方体的体积=底面积×高”。
教师:请大家观察教具,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系? 通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
板书:圆柱的体积=底面积×高
教师:如果用V表示圆拄的体积,S表示圆柱的底面积,H表示圆柱的高,可以得到圆柱的体积公式; V=SH 2.教学例4。
出示例4。
(1)教师指名学生分别回答下面的问题:
①这道题已知什么?求什么? ②能不能根据公式直接计算? ③计算之前要注意什么? 通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。(2)用投影片或小黑板出示下面几种解答方案,让学生判断哪个是正确的? ①V=SH=50×2.1=105 答:它的体积是105立方厘米。
②2.1米;210厘米 V=SH=50×210=10500 答:它的体积是10500立方厘米。
③50平方厘米=0,5平方米 V=SH=0.5×2,1=1.05 答:它的体积是1.05立方米。
④50平方厘米=0.005平方米
V=SH=0.005×2.1=0.0105立方米
答:它的体积是0.0105立方米。
一先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、②种解答要说说错在什么地方。(3)做第44页“做一做”的第1题。
让学生独立做在练习本上,做完后集体订正。
四、小结(略)
五、作业
练习十一的第1—2题。
这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。要求学生审题 后,知道底面直径的要先求出底面积,再求圆柱的体积。
÷ ×
2,复习圆柱的体积。
教师:我们是怎样得到圆柱体积的计算公式的?圆柱体积的计算公式是什么? 指名学生叙述一下圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。圆柱体积的计算公式是“底面积×高”,即:V=SH.
二、新课
1.教学圆柱体积公式的另一种形式。
教师:请大家想一想,如果已知圆柱底面的半径r和高H,圆柱体积的计算公式
应该怎样表达? 引导学生根据底面积S与半径r的关系可以知道:S=∏×R × R,所以圆柱体积的计算公式也可以写成:V=∏×R×R×H。2.教学例5。出示例5。
(1)教师提出下面问题帮助学生理解题意: ①这道题已知什么?求什么? ②求水桶的容积是什么意思?根据什么公式?为什么? 要使学生理解水桶的容积就是水桶能容纳物体的体积,求水桶的容积就是求这个圆柱形水桶内部的体积。所以可以根据圆柱体积的计算公式来计算。
⑧要求水桶的容积应该先求什么? 要使学生明确,水桶的底面积在题中没有直接给出,因此要先求水桶的底面积,再求水桶的容积。
①水桶的底面积应该怎样求?(2)让学生叙述解答过程,教师板书。
求出水捅容积之后,教师提问:最后结果应该怎样取值? 使学生明确要把计量单位改写成立方分米,取近似值时要采用去尾法。(3)做第44页。做一做”的第2题。
让学生独立做在练习本上,做完后集体订正。
三、课堂练习
-33黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
三角形的面积= ×底×高
梯形的面积:= ×(上底+下底)×高
圆的面积=∏×R×R 2.复习立体图形。
教师:我们已经学过的立体图形有哪些? 引导学生总结出已经学过的立体图形有:长方体、正方体和圆柱。
教师:它们的表面积和体积怎样求? 出示长方体、正方体和圆柱的模型,引导学生通过观察回忆它们表面积和体积的计算公式·,教师列成表格板书在黑板上:
教师:这三个立体图形的体积公式能否统一成一个呢? 使学生明确长方体、正方体和圆柱的体积公式可以统一写成:“底面积×高”。
教师:—如果长方体与圆柱的底面积和高分别相等,那么它们的体积相等吗?为什么?
二、课堂练习
l。做练习十一的第8、9题。
让学生独立做在练习本上,教师行间巡视,做完后集体订正。2。做练习十一的第10题。
这是一道联系实际的题目。读题后,教师提问:
“这道题要求前轮转动一周压路的面积。实际上是求什么?”
“那么这个圆柱的底面直径和高分别是多少呢?”
使学生弄清求前轮转动一周压路的面积,就是求前轮这个圆柱的侧面积。而这个圆柱的底面直径就是前轮的直径,这个圆柱的高就是前轮的轮宽。
分析后。让学生做在练习本上。做完后集体订正。3.做练习十一的第11题。
指名一学生读题后.教师提问:
“这道题已知什么?求什么?”
“装了 桶水是什么意思?”
要使学生明白:装了 桶水就是说水的体积是水桶体积的 即水的体积是24× 立方分米。根据圆柱体积的计算公式,可以直接计算,也可以用列方程来解。
设水面高为X分米。
24× =7.5×X X=18十7.5 X=2.4 4.做练习十一的第12题。
第(1)题,引导学生从圆柱的体积计算公式人手,由于“圆柱的体积=底面积×高”,所以当底面积相等财,高和体积成正比例。
第(2)题,启发学生根据第(1)题的结论列出比例式进行解答:即:
设另一个圆柱的体积为x立方分米:
= x= X=40 5.做练习十一的第13题。
读题后,教师提问:
“两个圆柱的底面半径相等说明了什么?”
-35黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
教师:现在我们沿着这些圆锥形物体的轮廓画线,就可以得到这样的图形。
随后教师抽拉投影片,演示得到圆锥形物体的轮廓线。
然后指出:这样得到的图形就是圆锥体的几何图形。
教师指出:圆锥有一个顶点,它的底面是一个圆。
然后在图上标出顶点,底面及其圆心O。
同时还要指出:我们所学的圆锥是直圆锥的简称。
接着让学生用手摸一摸圆锥周围的面,使学生发现圆锥有一个曲面。由此指出:圆锥的这个曲面叫做侧面。(在图上标出侧面。)让学生看着圆锥形物体,指出:从圆锥的顶点到底面圆心的距离叫做高。然后在图上标出高。
教师顺着母线的方向演示。问:这条线是圆锥的高吗? 指名学生回答后,教师要指出:沿着曲面上的线都不是圆锥的高。教师:圆锥的高到底有多少条呢? 引导学生根据高的定义,弄清楚由于圆锥只有一个顶点,所以圆锥只有一条高。
然后让学生拿出自己的学具,同桌的两名同学相互指出圆锥的底面、侧面和顶点,注意提醒学生圆锥的高是不能摸到的。2.小结。
圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是底面是圆,侧面是一个曲面,有一个顶点和一条高。3.测量圆锥的高。
教师:由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助—块平板来测量。
教师边演示边叙述测量过程:(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;(3)竖直地量出乎板和底面之间的距离。
测量的时候一定要注意:(1)圆锥的底面和平板都要水平地放置;(2)读数时一定要读平板下沿与直尺交会处的数值。4.教学圆锥侧面的展开图。
教师:圆锥的侧面是哪一部分? 教师展示圆锥模型,指名学生说出侧面部分。
教师:我们已经学习过圆柱,哪位同学能说一说圆柱的侧面展开后是什么图形? 学生回答出圆柱的侧面展开图是长方形后,教师设问:‘那么,请大家想一想,圆锥的侧面展开后会是什么图形呢?”
留给学生短暂的思考讨论时间后,教师指出:下面我们通过实验来看看圆锥的侧 面展开后是一个什么图形。
然后教师指导学生把圆锥模型的侧面展开,使学生看到圆锥的侧面展开后是一个扇形。展开后还可以再把它合拢,恢复原状,使学生加深对圆锥侧面的认识。
四、课堂练习
1.做第49页“做一做”的题目。
让学生拿出课前准备好的模型纸样.先做成圆锥,然后让学生试着独立量出它的底面直径。教师行间巡视,对有困难的学生及时辅导。2.做练习十二的第1题。
让学生自由地想,只要是接近于圆锥的都可以视为是圆锥。3.做练习十二的第2题。
-37黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
教师:那么,圆锥的体积可以怎样表示呢? 引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。
板书:圆锥的体积= ×底面积×高
教师:用字母应该怎样表示? 然后板书字母公式:V= SH 2.教学例1。
出示例1。
教师:这道题已知什么?求什么? 指名学生回答后,再问:已知圆锥的底面积和高应该怎样计算? 引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。
3.做第50页“做一做”的第1题。
让学生独立做在练习本上,教师行间巡视。
做完后集体订正。4.教学例2。(1)出示例2。
教师:这道题已知什么?求什么? 学生:已知近似于圆锥形的麦堆的底面直径和高,以及每立方米小麦的重量;求这堆小麦的重量。
教师:要求小麦的重量,必须先求出什么? 学生:必须先求出这堆小麦的体积。教师:要求这堆小麦的体积又该怎么办? 学生:由于这堆小麦近似于圆锥形,所以可利用圆锥的体积公式来求。教师:但是题目的条件中不知道圆锥的底面积,应该怎么办。? 学生:先算出麦堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出麦堆的体积。
教师:求得小麦的体积后.应该怎样求小麦的重量? 学生:用每立方米小麦的重量乘以小麦的体积就可以求得小麦的重量。
分析完后,指定两名学生板演.其余学生将计算步骤写在教科书第50页上。做完后集体订正,注意学生最后得数的取舍方法是否正确。教师要说明小麦每立方米的重量随着含水量的不同而不同,要经过酗量才能确定,735千克并不是一个固定的常
数:
(2)组织学生讨论,怎样测量小麦堆的底面直径和高? 讨论后.先让学生说出自己的想法.然后教师再介绍一下测量的方法:测量底面直径时。可以用两根竹竿平行地放在小麦堆两侧,测量出两根竹竿间的距离就是底面直径:也可以用绳子在底部圆的周围围一圈量得小麦堆的周长,再算出直径。测量小麦堆的高。可用两根竹竿.将一根竹竿过小麦堆的顶部水平放置,另一根竹竿竖直与水平的竹竿成直角即可量得高。
5.做第50页“做一做”的第2题。
教师:这道题应该先求什么? 学生:要先求圆锥的底面积。让学生做在练习本上,教师行间巡视。做完后集体订正。
四、小结(略)
五、课堂练习
-39黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
“这道题要求的是什么?”
“要求这段钢材重多少千克,应该先求什么?怎样求?”
“能直接利用题目中的数值进行计算吗?为什么?”
“题目中的单位不统一,应该怎样统一?”
分别指名学生回答后,要使学生明白这里要先将2米改写成200厘米,再利用圆柱的体积计算公式算出钢材的体积是多少立方厘米,然后再求出它的重量。最后计算出的结果还应把克改写成千克。4.做练习十二的第9题。
读题后,教师提问:这道题要求粮仓装小麦多少吨,应该先求什么? 要使学生明白,应该先求2.5米高的小麦的体积,而不是求粮仓的体积。让学生独立做在练习本上,做完后集体订正。
三、选做题
让学有余力的学生做练习十二的第10*、11*、12*题。1.练习十二的第10*题。教师:这道题要求圆锥的体积.但是题目中没有告诉底面积,而只是已知底面周长和高。请大家想一想,应该怎样求出底面积?
引导学生利用“C=2∏r”可以得到r=。再利用“S∏R,就可以求得S=∏()’。再利用圆锥的体积公式就可以求出其体积。
2.练习十二的第11*题。
这是一道有关圆柱、圆锥体积的比例应用题。
可以用列方程来解答。利用题目中圆锥和圆柱的体积之比,可以建立一个比例式。
设圆柱的高为x厘米。
=
X=9.6
(注意:由于圆锥和圆柱的底面积S都相等,所以计算中可以先把S约去。)3.练习十二的第12‘题。
这道题是拆分组合图形,引导学生仔细分析图形,不难看出它是由等底的圆柱和圆锥组合而成的:从图中可以看出,圆柱和圆锥的底面直径都是16厘米,而圆柱的高是4厘米,圆锥的高是17厘米。然后再根据圆的面积公式及圆柱和圆锥的体积公式,就可以求出这个组合图形的体积了。
课题一:整理和复习课
教学内容:教科书第55页的内容,完成练习十三的第l一3题。
教学目的:使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,发展学生的空间观念。
教具准备:
①圆柱、圆锥的模型各一个;②画有形状、大小以及摆放位置不同的几个圆柱的投
-41黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
圆锥有什么特点?(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。)(从圆锥的顶点到底面圆心的距离,叫做圆锥的高。)随着学生的发言,教师做简单的板书。
教师:怎样测量圆锥的高? 指名让学生说一说简单的测量方法,学生说完以后,教师加以概括,并举起一个圆锥模型,提醒学生不要把母线当做高。(教师不说母线的名称,只在圆锥模型上指出来。)(2)做第55页第1题的下半题和第2题的第(3)小题。
让学生格圆锥的特征自己用简单的词汇填写在表中。教师提醒学生:“举例”一栏要填写自己知道的形状是圆锥的实物。2.圆锥的体积。
(1)教师出示画有圆锥体的投影片。指名让学生回答教师的提问,引导学生说出正确的答案。
教师:怎样计算圆锥的体积?(用底面积×高,再除以3。)计算圆锥体积的字母公式是什么?(V= SH。)
这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一。)随着学生的发言,教师做简单的板书。(2)做第55页第3题的下半题。
让学生独立做题,教师行间巡视,做完以后集体订正。
此时,在黑板上已经形成了本单元所学圆柱、圆锥知识要点的板书。教师可根据 这些要点进行小结。(略)
三、课堂练习
1.做练习十三的第1题。读题后.让学生讨论两个问题:
通风管有没有上、下底?(没有。)这道题的第一步是求什么?(是求一个底面周长是34厘米、高是80厘米的圆柱的侧面积。)让学生独立做题,教师行间巡视,做完以后集体订正。2.做练习十三的第2题。
读题后。指名让学生回答:1升是多少立方分米? 然后让学生独立做题,教师行间巡视,提醒学生看清题目后括号里的要求。做完以后集体订正:
四、作业
练习十三的第3题。
课题二:整理和复习的练习课
教学内容:练习十三的第4—6题。
教学目的:使学生掌握所学的立体图形之间的联系和区别。学会运用本单元所学的立体图形知识解决一些简单的实际问题,进一步发展学生的空间观念。
教具准备:
①画有长方体、正方体、圆柱、圆锥和球*的立体图形的投影片;
②长方体、正方体、圆柱、圆锥和球*的模型各一个。教学过程:
-43黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
这道题先要求什么:(先要求这个底面积是12.56平方米、高是1。2米的圆锥的体积:)再求什么?(再求已知这个长方体的体积,又知道它的宽是10米、高是2厘米,求这个长方体的长。)然后让学生独立做题,教师行间巡视,做完以后集体订正。
第四单元简单的统计(二)
1.统计表 课题一:统计表
教学内容:教科书第58—59页的例题、完成“做一做”的题目和练习十四的第1—2题。
教学目的:使学生初步学会填写含有百分数的复式统计表的方法和步骤,进一步认识编制统计表的意义。
教具准备:小黑板或投影片若干。
教学过程:
一、复习
教师:我们已经初步学会如何填写一个统计表。现在我们一起复习一下填写统计表的方法和步骤。
请几名学生说一说,同学之间互相补充,教师随之在黑板上做简单的板书。
二、新课
教师用小黑板或投影片出示例题的统计表。
教师:这里有一张统计表,这是1995年一1997年东山村每年的总收人与村办企业收入的统计表。同学们注意观察一下,这张统计表与以前我们学习过的统计表有什么不同? 学生:横着的项目增加了一栏。
学生:增加了含有百分数的数据。
教师:对I在这张统计表中,增加了一栏,这一栏里都是含有百分数的数据。所以,我们今天学习的统计表叫做含有百分数的统计表。
教师板书课题。
教师:现在我们先计算出有关的数据,把这张统计表填写完整:
先让学生自己计算百分数、合计数,把统计表填写完整。教师行间巡视,注意个别辅导。可提醒学生:计算百分数时,百分号前的数只需取一位小数。填写合计这一行的含百分数的数据时,教师可提问:
这个数据应该怎样计算呢? 是不是把3年的百分数加起来就得到了呢? 要使学生明确:合计这一行的百分数要算3年村办企业收入的合计数占3年总收入的合计数的百分比:等学生填完表.教师提问。
教师:从这张统计表中我们可以获得关于东山村的什么情况? 请几名学生发言,说一说自己获得的情况。然后教师总结。
教师:在这张统计表中,不仅可以看出在199;年至1997年中每一年的全村总收入是多少,其中村办企业收入是多少,而且还可以看出每年中村办企业收入占全村收入的百分之几。
然后教师再指名提问:
1996年全村总收入比1995年增加多少万元? 1997年全村总收入比1996年增加多少万元?
-45黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
教师用小黑板或投影片出示题目,让学生认真读题后,教师提问。
教师:根据我们刚才复习的统计表的填写方法,同学们能不能自己编制这个统计表? 先想一想这个统计表的表头需要分为几项?是哪几项?(分为四项:班级、人数、达标人数、达标人数占全年级人数的百分数。)横行、竖行各分几格?(横行分四格,竖行分五格。)教师让学生自己试着画表格,同时也在小黑板或投影片上画表格。然后让学生独立填好表头、写上统计表的名称和制表日期。
教师:比较一下自己画的表格与教师画的表格是不是一样。(如有不一样的,说一说自己的想法.并指导画的不对的同学改正过来。)教师让学生独立将数据填在自己画的表格中,接着让学生自己计算百分数、合计 数,把统计表填写完整。教师行间巡视,注意个别辅导。
先集体订正表中所填写的数据,然后教师根据所编制的统计表(如下)提问。
中华小学四一六年级学生达到《国家体育锻炼标准(儿童组)》
情况统计表 ××年×月制
教师:从这张表中我们可以获得什么情况? 让几个学生说一说自己获得的情况,然后教师总结。
教师:从这张表中我们可以获得关于中华小学四一六年级学生达到《国家体育锻炼标准(儿童组)》的情况:我们不仅可以知道这个学校四至六年级各年级学生的总人数、达标学生的人数,还可以知道达标学生人数占本年级学生总人数的百分数,这样我们就可以比较哪个年级达标学生的人数占本年级学生总人数的比率大。从表中我们看到:四年级达标学生的人数占本年级学生总人数的比率最小,只有70%,六年级达标学生的人数占本年级学生总人数的比率最大,达到94%。
三、做练习十四的第5题。
教师用小黑板或投影片出示题目,请一位学生读题后让学生试着独立编制统计表。教师行间巡视,个别辅导。做完以后集体订正,请几位学生说一说,从这张统计表中可以获得什么情况。
四、做练习十四的第4题。
让学生翻开书自己读题,独立做题,教师行间巡视,个别辅导。做完以后集体订正。
五、教师提示练习十四的第6*题。
教师请学生翻开教科书,先自己读题思考。然后,教师通过提问引导学生讨论:
教师:
“各班植树棵数占总数的百分数”中的“总数”是指什么数?(三个班植树的合计数)“各班植树棵数占总数的百分数”是什么意思?(是各班植树棵数占三个班植树总数的百分之几”)“那么填写这张统计表时,先要算什么,填什么?”(先要算出三个班植树的合计数,然后用各班植树的棵数分别除以三个班植树的合计数,求出各班植树棵数占总数的百分数。)“在计算百分数这一栏的数据时,与“人数”有没有关系?”(没有。)怎样计算“平均每人植树棵数”这一栏的数据?(用各班植树的棵数分别除以各班的人数,用合计植树的棵数除以合计的人数。)
六、作业
让学有余力的学生完成练习十四的第6*题。
-47黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
与水平射线垂直的射线旁要注明表示数量的数据,因此必须留有足够的空白。如果把两条射线画在图纸的中间部位,直条会因不够高度画不下,成排不下五个直
条。(与水平射线垂直的射线的高度可达图纸的音处,留音的空白书写统计图名称。)最后确定水平射线上和与水平射线垂直的射线上各表示什么。(指出通常与水平射线垂直的射线上表示数量;在这里,水平射线表示年份。)(2)在水平射线上适当分配条形的位置,确定直条的宽度和间隔; 提问:原来统计表中有几个年份?那么图中要画几个直条? 请一位学生量一量投影器上图纸中画出的水平射线的长度。教师说明:画出的水平射线长6厘米,根据5个直条与6个空隙计算,要把画出的水平射线平均分成11份,因此这里用0.6厘米宽的直条表示一个年份:间隔也是0.6厘米。教师完成下图。
1993年 1994年 1995年 1996年 1997年
(3)在与水平射线垂直的射线上根据数的大小的具体情况,确定单位长度表示多少数量。教师说明:年降水量最高的数据是1005毫米,画出的与水平射线垂直的射线的高度略高于最大的数量。因此,可以把画出的6厘米的垂直射线平均分成6份(每份大约0.8厘米),每一份表示200毫米。在与水平射线垂直的射线箭头的旁边注明单位。教师完成下图:
1000 800 600 400 200 0 1993年
1994年 1995年 1996年 1997年
(4)按照数据的大小画出长短不同的直条。
引导学生按照例1统计表中的数据,1993年降水量920毫米,要在与水平射线垂直的射线上找到相应的位置,800与1000的中间是900,再靠上些为920毫米处,用铅笔过此点在图纸上画一条与水平射线平行的线段(画到1993年上方处即可)。然后三角板对齐1993年直条位置,画出与水平射线垂直的两条平行线,画到与前面画的水平线相交为止:再在直条中涂上阴影。表示其它各年份降水量的直条均按此方法进行,其中最后两、三个直条.可以让学生指图说出它们的位置,或指名让学生画出。(5)在图纸上方写上统计图的标题,注明制图日期。3.引导学生看图分析。提问:
(1)哪一年的降水量最多?是多少毫米?(1995年的降水量最多,是1005毫米。)(2)哪一年的降水量最少?是多少毫米?(1996年的降水量最少,是670毫米。)
-49黄花镇黄花小学六年级下册数学教案
执教者: 陈荣利
2012年上学期
0 数学小组 语文小组 美术小组 音乐小组 体充小组
教师出示幸福小学五年级参加课外活动人数的统计表和统计图后,让学生先观察,根据表和图列出数据的情况可以提出哪些问题?学生纷纷提出问题后,教师可以归纳出以下五个问题:
(1)哪个课外小组的人数最多?是多少人?(2)哪个课外小组的人数最少?是多少人?(3)体育小组的人数是数学小组人数的多少倍?(4)平均每个课外小组有多少人?(5)平均每个班参加课外小组的有多少人? 然后,教师指名回答以上五个问题。
二、新课
1.教学例2。
教师出示例2的统计表,并提问:例2的统计表与例1的统计表有什么不同的地方?(例l的统计表只有降水量一种数据.例2是复式统计表,是分性别、车间统计的人数。)教师又问:要画例2的条形统计图时,哪些地方与例l相同?哪些地方与例1不同?(跟例l的相同处是降水量和男工、女工的人数都是用直条来表示,不同处是,每年的降水量只要用一个直条来表示。而每个车间的男、女工人数要各用一个直条来 表示。)教师问:它们之间怎样来区分?(表示男工和女工人数的直条可以分别用不同的颜色或线条来表示。)教师说明制图的方法:
(1)画出水平射线和垂直射线,垂直射线上表示人数,水平射线上表示车间。在两条射线上分别画上适当的刻度(见下图)。
120 100 80 60 40 20 0
第一车间 第二车间 第三车间
(2)在水平射线上画直条,如在第一车间部分,左边画出表示男工80人的直条(画有斜线)。右边画出表示女工30人的直条。其它两个车间的直条画法相同(见下页图)。(出示条形统计图时可以先把第三车间部分遮住,学生画完后再揭开。)教师让学生仿照第一、第二车间直条的画法,在书上画出第三车间的两个直条。
--50
第四篇:人教版二年级下册数学教案和反思
人教版新课标 二年级下册教案
二年级数学教学计划
(2005——2006学下期)指导思想:
本期数学教学仍以新课标精神为指导,注重有创新、开放精神的主动学习,同时,努力培养学生严谨、塌实的优良习惯,从而达到二年级应掌握的知识、技能以及情感、态度价值观的要求。
学生情况分析:
本年级学生74人,大部分家住龙湖花园。家庭学习环境良好,家长有一定辅导能力的约占50%,其余学生全靠课堂教学进行数学学习。上期考试结果,及格率100%,优生率49%。总体来看,学生在100以内的加减法,表内乘法的计算方面基本达到教学要求,但少数学生的计算速度和正确率仍需提高。在数学知识的应用方面,学生有解决实际问题的兴趣,但一部分学生欠仔细、灵活。在数学的学习习惯上,听课习惯、作业习惯都有一定进步,但学生在学会审题上还需要培养和训练。
本期教学内容:
以人教版(新课标)小学数学二年级下册为教材。
教学要求:
1.认识计数单位“百”和“千”,知道相邻两个计数单位之间的十进关系;掌握万以内的数位顺序,会读、写万以内的数;知道万以内数的组成,会比较万以内数的大小,能用符号和词语描述万以内数的大小;理解并认识万以内的近似数。
2.会口算百以内的两位数加、减两位数,会口算整百、整千数加、减法,会进行几百几十加、减几百几十的计算,并能结合实际进行估计。
3.知道除法的含义,除法算式中各部分的名称,乘法和除法的关系;能够熟练地用乘法口诀求商。4.初步理解数学问题的含义,经历从生活中发现并提出问题、解决问题的过程,会用所学的数学知识解决简单的实际问题,体验数学与日常生活的密切联系。知道小括号的作用,会在解决问题中使用小括号。
5.会辨认锐角、钝角;初步感知平移、旋转现象,会在方格纸上将一个简单图形沿水平方向或竖直方向平移。
6.认识质量单位克和千克,初步建立1克和1千克的质量观念,知道l千克=1000克。
7.了解统计的意义,体验数据的收集、整理、描述和分析的过程;会用简单的方法收集和整理数据,认识条形统计图(1格表示5个单位)和简单的复式统计表;能根据统计图表中的数据提出并回答简单的问题,并能进行简单的分析。
8.会探索给定图形或数的排列中的简单规律;有发现和欣赏数学美的意识,有运用数学去创造美的意识;初步形成观察、分析及推理的能力。
9.体会学习数学的乐趣,提高学习数学的兴趣,学的信心。10.养成认真作业、书写整洁的良好习惯。建立学好数 11.通过实践活动体验数学与日常生活的密切联系。
12、口算的分阶段要求:
┌────┬────────────——┬─────────────——┐ │ │ 单元结束时 │ 期末 │ │ ├─────┬──────——┼──────┬──────——┤ │ │平均错误率│ 速度 │平均错误率 │ 速度 │ ├────┼─────┼──────——┼──────┼──────——┤ │ │ │绝大多数达到 │ │绝大多数达到 │ │表内除法│ 6% │ │ 4%以内 │ │ │ │ │每分钟做8题 │ │每分钟做10题 │ └────┴─────┴──────——┴──────┴──────——┘
教学重点:
1、表内除法。
2、万以内数的认识。
3、用数学解决问题。
教学难点:
培养生学会独立审题的能力;学会解决各种应用题。
培优补差措施:
1、认真备好课,夯实基础知识,确保每一个学生扎实掌握新知,巩固旧知。对学习有困难的学生,要多给关注,多给发言机会,激发其参与热情。
2、在课堂教学中确保双基的基础上,注意适时发展优生的思维,培养优生的能力,从而也带动中差生的发展。培优主要体现在两个途径上:
(1)、在每堂课的新知教学后,安排适量发展练习题。(2)、在课堂教学的各个环节中,每个知识点上,适时引导,相机点拨,给学生“摘桃”的机会。(3)、利用每周的思维训练时间,激发学生的数学学习热情,组织愉快的思维训练。
减负提质措施:
1、钻研好《新课标》,精心备好课,确保课堂教学质量。
2、教学任务在课内完成,课外尽量不留作业,或只留兴趣性、发展性作业。
3、对学生的要求要合理,充分肯定每一个学生的优点,不用一个刻度要求每一个学生,作业布置分层进行,避免部分学生过重的作业负担和心理负担。
教学进度安排:
2005——2006学小学二年级数学下期教学进度安排表
周次内容课时 1解决问题5 2—5表内除法
(一)16 6—7图形与变换6 7—8表内除法
(二)6 8—9万以内数的认识7 11克和千克3 11—14万以内的加法和减法
(一)13 15统计4 16找规律4 17—18复习8
第一单元 解决问题
单元要点分析
教材内容:这部分教材是学习两步应用题的开始,先通过图文应用题来分析题目中的数量关系,主要以加减复合的应用题为主,适当的再出现乘加、乘减复合的应用题。在教学中可以从一步应用题出发,再慢慢的使它转变成一道两步计算的应用题。以便使学生更好的认识两步应用题的结构以及它与一步应用题的联系与区别。向学生介绍小括号,并能够正确的使用小括号,会利用小括号列出两步应用题的解答算式。
重、难点:
1.会分析两步应用题的数量关系,找出中间问题,确定先算什么,再算什么。
2.能够正确的使用小括号,利用小括号列出两步应用题的综合算式,而且能进行计算。
关键:会分析两步应用题的数量关系,正确列式解答应用题。
教学目的:使学生了解两步应用题的结构,初步学会口述应用题的条件和问题,会分析应用题中的数量关系,会用分步和综合两种方法来列式解答两步计算的应用题,并学会正确的使用小括号。
1、加减、连减应用题
第一课时:加减两步应用题
教学内容:教科书第4页例1。
教学目标:
1.使学生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法,知道可以用不同方法解决问题。
2.培养学生认真观察等良好的学习习惯,初步培养学生发现问题、提出问题、解决问题的能力。
3.通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。
教具、学具准备:教科书第1~3页游乐园情境放大图片或多媒体教学课件。
教学过程设计:
一、创设情境
1.师:同学们,休息日的时候,你最喜欢做什么?
2.出示游乐园情境图,谈话:“我们看看画面中的小朋友们在做什么?”把学生的注意力吸引到画面上来。
3.让学生观察画面,提出问题。
教师适当启发引导:有多少人在看木偶戏?学生自由发言,提出问题。
二、探求新知
1.利用多媒体教学课件把画面集中放大到木偶戏场景中(见课本图)。
师:看到这个画面,你想知道什么?学生自由发言。
教师有意识、有目的地板书:现在看戏的有多少人?
2.明确画面中所提供的信息。
师:从图中你知道了什么?
3.小组交流讨论。(1)应该怎样计算现在看戏的有多少人?
(2)独立思考后,把自己的想法在组内交流。
(3)选派组内代表在班级交流解决问题方法。
4.把学生解决问题的方法记录在黑板上。
(1)22+13=35(人)(2)22-6=16(人)
35-6=29(人)16+13=29(人)
5.观察比较两种方法的联系。
明确两种方法的结果都是求现在看戏的有多少人,在解决问题的思路上略有不同。
6.提问:把分步解答的两个算式合成一个算式该怎么办?
学生自己尝试列综合算式。
板书:(1)22+13-6(2)22-6+13
交流:你是怎么想的?
7.小结。
三、巩固应用
1.练习一的第1题,让学生说明图意,明确计算的问题后,让学生独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的学生以启发。
2.练习一的第4题,选取了中国国家足球队参加2002年世界杯预选赛亚洲区十强赛的内容,通过计算总分,进一步巩固所学的知识。教师不必强求学生必须利用多种方法,只要解决问题就可以了。让学生自己独立完成,解答后让学生互相交流,在交流中互相启发,加深理解。汇报解决问题的思路时,教师结合题目的具体内容,适当渗透思想教育。
3.让学生互相交流,在生活中还有哪些类似的问题可以用本节课学习的知识来解答。学生自编题目,互相解答。
四、全课总结
1.请同学们说一说,这节课有哪些收获。
2.教师强调:请同学们尝试用本节课学习的知识去解决我们生活中的问题。
教学反思:教学中教师组织学生围绕问题的解决采取与之相关的信息,创设开放性的思维空间,激发学生自主地理解、分析数学信息,从不同的角度去寻找解题的思路,初步学习解决两步计算应用题的解题步骤与方法。课堂上老师采用四人小组合作学习的形式,让学生自由地发表自己的见解,交流自己的解题方法,从而拓宽了学生的解题思路,充分调动起学生学习数学的积极性,激发学生自觉运用已有的知识经验去解决身边的数学问题。
第二课时:连减应用题
教学内容:教学连减应用题,教科书第5页的例题2
教学目标:
1.使学生初步认识两步连减应用题的结构,学会分析题目的已知条件和问题,并会列综合算式。
2.学会使用小括号列综合算式,并了解小括号的作用。
教具准备:教科书第5页的挂图
教学过程设计:
一、复习
1.教师出示下列口算卡片,让学生快速口算。
15+6= 25-8= 30+7= 6+24=
27-9= 14+6= 20-7= 19-9=
2.一辆空调车上有42人,中途下车8人,又上来16人,现在车上有多少人?
要求学生自己分析题目的已知条件和问题,列式计算并说出每—步算式表示的意义。
二、新授课
我们今天继续学习“两步应用题”(出示课题:两步应用题)
1.教学例2。
出示教科书第5页的挂图,让学生认真观察画面。
(1)提问:用自己的话说一说画面的内容。
根据画面的内容编一道应用题。
可先让学生自由编题,然后出示:面包房一共做了54个面包,第一队小朋友买了8个,第二队小朋友买了22个,现在剩下多少个?
(2)全班同学读题后提问:题目的已知条件和问题分别是什么?根据“一共做了54个面包,第一队小朋友买了8个”这两个条件可以求什么?
(第一队买后还剩多少个)怎样列式?[54—8=46(个)]
那要求还剩下多少个?又该怎样列式?[(46—22=24(个))
谁能列一个综合算式?[54—8—22=24(个)]
(列好后,要求学生说出每一步算式的意义)
(3)教师:大家想一想还有没有不同的想法?(鼓励学生从不同角度去思考问题)根据“第一队小朋友买了8个,第二队小朋友买了22个”可以求什么问题?(两队一共买了多少个面包)可以怎样列式?[8+22=30(个)]那要求还剩下多少个?又该怎样列式?[54—30=24(个)]同桌的同学互相讨论一下:如果写成一个算式,应该怎样列式?
教师:要先算8+22,列式就要加上一个小括号。54-(8+22)。计算时先算小括号里面的运算。
列式:54-(8+22)=54-30
=24(个)答:还剩24个面包。
注意:应用题解答完后,要记住写答案。
列出算式后,要求学生说出每一步表示的意义。
2.教师小结:解答两步计算的应用题,关键是分析题里的数量关系,确定先算什么,再算什么。如果要改变运算顺序,可以使用小括号。
三、巩固练习
1.教科书第6页练习一的第2题。
(1)看图口头编题:3个组一共收集了94个易拉罐,其中第一组收集了34个易拉罐,第二纽收集了29个易拉罐。那第三小组收集了多少个易拉罐?
(2)分析题目,找出题目的已知条件和问题。
(3)想一想,第一步要先求什么?第二步要再求什么?
(4)列式计算: 94—34=60(个)60—29=31(个)
或34+29=63(个)94-63=31(个)
让学生列出综合算式,要他们正确的使用小括号。列好后要求学生说出每一步表示的意义。
94-34-29或94-(34+29)
2.教科书第7页练习一的第3题。
让学生自己分析题目的已知条件和问题,然后用两种方法列式解答。58-6-7或58-(6+7)
[第2题和第3题是配合例2设计的。教学时先让学生说明图意,然后思考要解决的问题。着重练习如何正确使用小括号,同时对学生进行环保意识的教育。]
3.新型电脑公司有87台电脑,上午卖出19台,下午卖出26台,还剩下多少台?(用两种方法解答)
4.班级里有22张腊光纸,又买来27张。开联欢会时用去38张,还剩下多少张?
5.少年宫新购进小提琴52把,中提琴比小提琴少20把,两种琴一共有多少把?
6.一辆公共汽车里有36位乘客,到福州路下去8位,又上来12位,这时车上有多少位?
教学反思:为了能让学生亲历自主发现问题、自主解决问题的全过程,体验数学“被我所学,为我所用”的乐趣。根据低年级学生的心理特点,应用了计算机图、文、声、像并茂的强大媒体表现功能创设了一个虚拟的却又十分生动形象的游乐园小朋友在面包房购买点心的生动活泼的情况,使课伊始,趣即生。学生兴致勃勃地收集信息、发现问题、尝试解决问题。
第三课时:练习课
教学内容:巩固新学的加减、连减应用题。
教学目标:
使学生进一步认识加减、连减两步应用题的结构,学会列式解答加减、连减应用题。教学过程设计:
1.口算:
78-17 45+54 71-34 35+24
6l-45 29+56 29+41 91-45
2.补充问题后,再列式计算。
(1)有20个乒乓球,17个小皮球,_____________?
(2)飞机上有儿童和大人一共57名,其中大人38名,____________?
(3)小明用了5张电脑磁盘,还剩下19张,____________?
3.妈妈买了一些蛋糕,上午小朋友吃了9根,下午来了8个客人,每人吃一根,冰箱里还有21根。妈妈一共买了多少根雪糕?
4.二年3班的小朋友为了迎接新年活动,做了27个红灯笼,18个黄灯笼,送给一年级的小朋友15个,还剩下多少个?
5.幼儿园第一次买来小象洒水壶12个,第二次又买来29个,现在分给17个小朋友去给花浇水,还剩多少个洒水壶没有分?
6.图书馆有故事书54本,第一次借出16本,第二次借出28本,剩下的第三次全部借出。第三次借出多少本?
7.1996年和2000年我国运动健儿在奥运会上获奖牌情况如下:
金牌 银牌 铜牌 1996年 16 22 12
2000年 28 16 15
(1)1996年共获奖牌多少块?
(2)2000年共获奖牌多少块?
(3)请你自己提一个问题,并解答。
教学反思:精心设计问题的合理性,教师也注意了 问题的开放性,解决问题的 多样性,充分展示了 学生不同的 思维方式,从而让每一 个 学生都体验到成功的喜悦
2、乘加、乘减应用题
第一课时:乘加、乘减应用题
教学内容:教学乘加、乘减应用题。教科书第8页例3。
教学目标:
1.使学生初步认识乘加、乘减两步应用题的结构,学会列式解答乘加、乘减应用题。
2.引导学生自主思考,自主解决问题,让学生知道可以用多种方法解决同一问题。
教具准备:教科书第8页例3的挂图。
教学过程设计:
一、复习
1.商店里有4盒乒乓球,每盒6个,一共有多少个?
2.商店里有20个红皮球和17个花皮球。卖出35个皮球,还剩下多少个?
(要求学生列综合算式解答,并说出每一步算式表示的意义。)
二、新授课
1.教学例3。
(1)出示:教科书第8页例3的挂图,让学生认真观察画面。用自己的话说一说画面的内容。再根据画面的内容编一道应用题。
学生自由编题后,教师出示:跷跷板乐园有3个跷跷板,每个跷跷上有4人在玩,还有7人在旁边看。跷跷板乐园里一共有多少人?
(2)全班读题后提问:
题目的已知条件和问题是什么?
根据题目的已知条件,能不能一步就算出跷跷板乐园里一共有多少人?(不能)
那我们要求“跷跷板乐园里一共有多少人?”应该知道什么条件?(有多少人在玩?旁边有多少人?)
大家想一想我们第一步要先算什么?(有多少人在玩跷跷板)
根据题目的哪些条件可以求出“有多少人在玩跷跷板”?(有3个跷跷板,每个跷跷板上有4人在玩)
怎样列式? [4X3=12(人)]
为什么用乘法计算?(因为它是求3个4是多少,所以用乘法计算)
现在我们已经知道有12人在玩跷跷板,那第二步该算什么?(跷跷板乐园里一共有多少人)怎样列式?[12+7=19(人)]
谁会用一个算式表示?[4X3+7=19]
请一个同学说一说每一步表示的意思。应用题解答完要记住写答案。
列式:4X3=12(人)或4X3+7
12+7=19(人)=12+7
=19(人)
答:跷跷板乐园里一共有19人。
(3)小结:这一道应用题时用乘法先求出一共有多少人在玩跷跷板,再用加法求出跷跷板乐园里一共有多少人。我们在解答应用题时一定要认真读题,分析题目的已知条件和问题的关系,然后再选择正确的计算方法。最后列式计算写答案。
2.练习。
完成教科书第9页的做一做。
[此题呈现的是一个开放性的画面。教师要注意引导学生从不同的角度去观察与思考,如观察小鸟、花朵、蜜蜂等,由此从多种角度发现问题、提出问题并予以解答。]
让学生自己观察画面,口头编题。
如:(1)树上有10只小鸟,飞走了4只,又飞来3只小鸟,现在树上有多少只小鸟?
列式:10-4+3 或:10-(4-3)
(2)花丛中有一些小蜜蜂,有两个花丛的蜜蜂是4只,还有一个花丛的蜜蜂是3只。花丛中一共有多少小蜜蜂?
列式:4X2+3
(可让学生自己编题,然后请同学解答,让学生体验当老师的感觉。教师在评讲时要肯定同学们的积极性。)(学生列完算式一定要学生说出每一步表示的意义)
三、巩固练习
1.完成教科书第10页练习二的第1题。
(1)看图口头编题:爸爸,妈妈和大熊都掰了9个玉米,小熊掰了6个玉米,小熊一家一共掰了多少个玉米?
(2)分析题目,找出题目的已知条件和问题。
(3)想一想,第一步要先求什么?第二步要再求什么?
(4)列式计算:9X3=27(个)27+6=33(个)
让学生列出综合算式,列好后要求学生说出每一步表示的意义。
2.学校教学楼有四层,每层有6间教室。后来又盖了8问,现在一共有多少间? 3.刘老师有5盒乒乓球,每盒装6个,同学们借走了17个,还剩多少个?
4.文具店原有钢笔40支,又新进6盒钢笔,每盒8支,现在文具店有多少支钢笔?
5.同学们做了5盒大红花,每盒装9朵,送三好学生32朵,还剩下多少朵?
6.育红小学有4个班参加乒乓球赛,每班选8名选手和一名候补队员。问一共选了多少名选手?
教学反思:教学“混合运算”从学生熟悉的购买商品的事例中抽象出“混合运算”的意义以及运算顺序。由一个开放性的画面入手,说出一个混合运算的算式以及运算过程,本课设计能根据学生的课标要求,教材内容以及低年级学生的认知规律,由直观到抽象,层层深入,使学生在老师的指导下经过动手摆,动脑想,动笔算,逐步发现“混合运算的意义以及运算顺序。
第二课时:乘加、乘减应用题练习课
教学内容:
巩固乘加、乘减两步应用题。教科书第10页练习二的第2~4题。
教学目标:
使学生进一步认识乘加、乘减两步应用题的结构,学会列式解答乘加、乘减应用题。
教学过程设计:
一、1.根据问题选择算式并连线。
妈妈买了29个果冻,第一天吃了7个,第二天吃了15个。
(1)两天吃了多少个果冻?(1)29—7—15
(2)还剩多少个果冻?(2)15—7
(3)第一天比第二天少吃多少个?(3)7+15
2.根据算式补问题。
学校买来38个排球,分给二年级5个班,每班分7个。
7X5=35(个)________________________
38-35=3(个)________________________
二、练习
1.教科书第10页的第2题。
想一想题目的已知条件和问题是什么?要求还剩多少个萝卜,我们必须知道什么条件?(一共种了多少个萝卜和送了多少个给兔奶奶)那我们第一步先求什么?(一共种了多少个萝卜?)接着再求什么?(还剩多少个萝卜)
列式:9X5-15
提问:9X5表示什么?再减15又表示什么?
2.教科书第1l页的第3题。
分四人一小组进行讨论,然后由小组长汇报本小组讨论的结果。
[主要的要点:爸爸和妈妈是成人要买成人票,每张8元,共花8X2=16(元),小明是儿童,每张票5元,这样三人去动物园要花16+5=21(元)。21元大于20元,所以用20元买票不够。]
3.教科书第11页的第4题。
教师:球队的得分分主场分和客场分两种。本题可让学生分小组合作讨论,然后再汇报讨论结果。
中国队的主场得分是卡塔尔队主场得分的4倍,卡塔尔主场得分是3分,所以中国队主场得分是3X4=12。中国队的客场得分是7分。中国队的总分是19分。
阿联酋队的主场得分是3分,客场得分是8分。阿联酋队的总分是11分。
乌兹别克斯坦队的主场得分是阿联酋队主场得分的3倍,阿联酋队的主场得分是3分,所以乌兹别克斯坦队的主场得分是3X3=9,客场得分是1分。乌兹别克斯坦队的总分是10分。
卡塔尔队主场得分是3分,是本队客场得分的2倍,客场得分是3X2=6。卡塔尔队的总分是9分。
阿曼队主场得分是5分,客场得分与乌兹别克斯坦队的客场得分相同。阿曼队的总分是6分。
3.妈妈买来26个桔子,吃了几个,剩下的每5个放一盘,放了4盘。问吃了几个桔子?
4.游乐场有7辆小赛车,每车能坐4人,还有21人在排队等候,现在一共有多少人?
5.快餐店运来56个汉堡包,卖出37个,又运进21个,现在快餐店有汉堡包多少个? 6.4个工人叔叔每人要做7个卡通玩具,已经做了19个,还要做多少个?
7.商店里有30个书包,上午卖出13个,下午又卖8个,还剩下多少个?
教学反思:通过学生对乘加、乘减混合算式运算过程理解的基础上,安排应用题,让学生加深对运算顺序的理解教学“混合运算”从学生熟悉的购买商品的事例中抽象出“混合运算”的意义以及运算顺序。由购买商品的事例入手,说出一个混合运算的算式以及运算过程,本课设计能根据学生的课标要求,教材内容以及低年级学生的认知规律,由直观到抽象,层层深入,使学生在老师的指导下经过动手摆,动脑想,动笔算,逐步发现“混合运算的意义以及运算顺序。:新课标中指出,让学生学会交流、合作,是否在交流学习的过程中,每个学生都发表了自己的意见?是否每个学生都能在小组中找到自己的位置,这正是我们教师必须所关注的问题。在教学本课时,我鼓励学生提出问题,并探究出混合运算的方法和规律,在活动中注重加强学生解决实际问题的能力。学生在探索计算方法的时候,关注了学生语言的发展。
通过这节课,学生基本掌握了“混合运算”计算格式以及运算顺序,但是在解决实际问题的时候就出现了如“24元可以买8枝康乃馨,一枝玫瑰花5元,1枝康乃馨比1枝玫瑰花便宜多少钱?”等学此类的问题学生感到困难,乘加、乘减、除加、除减这四类问题学生刚刚接触,虽然上册的教材偶尔也会出现,但是只有少部分学生能够理解。
3、整理和复习
教学目标:
对本单元学习内容进行整理,进一步深化对两步算应用题的理解,提高发现问题、提出问题、解决问题的能力。
教学过程设计:
一、直接写出得数。
35-5X4= 63-(35+14)= 32-5-7=
19+3X9= 45+8-39= 8X9-38=
56+34-39= 2X8+49= 8X6+52=
二、判断题。
1.甲数是35,比乙数多8,乙数是43。()
2.80减去7的4倍,差是52。()
3.第一个加数是15,第二个加数与它相同,两个加数的和是45()
三、填空。(1)34加19的和是____________,再减去47得____________。
(2)6乘9的积是____________,再减去39得____________。
(3)89减去43的差是____________,再加25得____________。
(4)76减去43的差是____________,再减去19得____________。
四、列式计算。
1.6乘4的积,再加上35得多少?
2.81减32的差,再减23得多少?
3.68减41与19的和,差是多少?
4.78减6与8的积,所得的差是多少?
五、应用题。
1.校园里种了78棵树,其中有25棵松树,27棵柳树,剩下的是树。杨树有多少棵?
2.某市参加全省科技比赛的共80人,其中参加航模组的34人,参加船模组的36人,其余的参加车模组。参加车模组的有多少人?
3.工人叔叔修一条长100米的路,每天修8米,修了3天,还剩多少米没修?
4.有16米布,做床单用去5米,做衣服用的米数和做床单用的同样多,还剩多少米布?
5.一箱苹果,吃了28个,剩下的苹果每天吃5个,可以吃7天。这箱苹果原有多少个?
教学反思:通过这节课,学生基本掌握了“混合运算”计算格式以及运算顺序,但乘加、乘减、这问题学生刚刚接触
只有少部分学生能够理解。
第二单元 表内除法
(一)单元要点分析
教材内容:本单元是在学生已经初步了解了乘法的意义、学会乘法口诀口算表内乘法的基础上进行教学的。紧密联系学生的生活经验,为学生创设解决问题的情景,让学生了解知识来源于生活,消除学生因为第一次 接触除法而产生的陌生感,从而让学生积极主动地去学习。教学是通过学生动手操作,分一分、摆一摆等方法,形成表像,在此基础上进行抽象概括,建立等分活动与除法的联系,培养学生解决问题和数学思考的能力。
1.学习除法的初步认识,首先建立“平均分”的概念,平均分就是
把总数分成同样多的份数或每份同样多。在总数中分走同样多的几部
份,也就是几个减数相同,这样用除法计算比较简便。
2.在实际操作中理解除法的含义。通过摆学具我们知道:把一个
数平均分成几份,求每份是多少用除法计算,求一个数里面有几个另一
个数也用除法计算。
3。通过看一幅图,列两个乘法算式和两个除法算式的练习,沟通
乘除法之间的联系。
4.知道了除法的含义,记住了2~6的乘法口诀,那么用2~6的乘法
口诀求商就比较容易了。求商时,根据乘法和除法的关系,先想除数和
几相乘得被除数,再想用哪一句乘法口诀。
5.除法应用题的数量关系与除法含义是紧密相联的,除法的含义
有两种,一是把总数平均分成几份,求每份是多少;二是表示一个数里
有几个另一个数。因此,除法应用题就有两种数量关系。这两种应用 题的相同点都是除法含义,用除法计算,都已知要分的总数。不同点是
其中的一个条件不同,问题不同,列出的算式不同,单位名称也不同。
教学目的:
1.让学生在具体情境中体会除法运算的含义。会读、写除法算式,知道除法算式各部分的名称。
2.使学生初步认识乘、除法之间的关系。能够比较熟练地用2—6的乘法口诀求商。
3.使学生初步学会根据除法的意义解决一些简单的实际问题。
4.结合教学使学生受到爱学习、爱劳动、爱护大自然的教育。培养学生认真观察 独立思考等良好的学习习惯。
重难点、关键:通过动手操作建立“平均分”的概念。知道除法的含义。用除法计算应用题。能正确迅速地用2~6的乘法口诀求商。
1、除法的初步认识
第一课时:平均分的认识
(一)教学内容:教科书第12~14页例
1、例2,练习三的第1~3题。
教学目标:
1.使学生建立“平均分”的概念,知道平均分就是每一份分得结果
同样多。
2.通过分一分活动,培养学生动手操作能力和概括能力。
教具、学具准备:
教科书第12页准备春游食品情境放大图或课件;按例1内容,让学生准备实物卡片,准备10张正方形卡片、15个○卡片、20根小棒。
教学过程设计:
一、准备
1.出示准备春游食品的情境图。以小精灵聪聪的身份说二(1)班明天要去春游。小朋友正忙着准备春游食品呢!我们来看一看,他们都准备了哪些食品。
2.让学生观察画面,并请学生说一说了解到的情况。
二、新课
1.教学例1,引入“平均分”。
师:我们来帮助二(1)班小朋友准备春游食品好吗?!请各组为二(1)班的5位小朋友分配春游食品。
(1)讨论分配方案。突出每种食品“应该每份同样多”。(2)动手分一分。
分好后,请各组推代表展示分配结果。
(3)让学生观察各组为二(1)班小朋友准备的春游食品,发现:每份中的各种食品同样多。
说明:每份分得同样多,叫平均分。
2.巩固“平均分”。
(1)出示教科书第13页“做一做”。
请学生看题,并说一说题意。
特别请学生说一说“平均分成5份,是什么意思。”
(2)让学生用10张正方形卡片代替面包,分一分。
分好后,同桌检查一下:是不是分成了5份,每份是不是同样多。然后,按分的结果填空。
3.尝试平均分物品。
(1)按教科书第14页例2提出:把15个橘子平均分成5份。
(2)请各组用实物图卡片(或○卡片)分一分。
(3)交流。请学生说一说,怎样分的,分的结果。
(4)教师归纳平均分的方法:把15个橘子平均分成5份,可以每次每份分一个或几个。最后,要使每份分得同样多。
4.独立进行平均分。
(1)让学生用小棒代替矿泉水,独立完成把12瓶矿泉水平均分成3份的任务。
(2)交流。请学生说一说,怎样分的。
三、练习
1.练习三的第1题。
(1)让学生用小棒代替花,动手往3个花瓶里插花。
说明:想怎么插花就怎么插。最少设计两种插花的方案。
(2)交流。请学生展示自己最得意的插花方案,并说出自己的想法。
(3)评价。让学生相互评价,欣赏自己的作品。
然后,请学生选出每瓶插同样多枝花的插花方案。
强调:这几种插花方案,都是把花平均插进3个花瓶里。
此题的“插花活动”为使学生对平均分的印象更深,开始可以让学生喜欢怎么插就怎么插,以显示题目的开放性。教学时,还可让学生用画一画的方法,往每个花瓶里插花。借助插花活动,让学生体会平均分的含义。
2.练习三的第2题。
让学生根据“平均分”概念判断“谁分得对”。练习时,先让学生弄明白题目要求,再让学生独立进行判断。让学生在运用“平均分”概念进行判断的练习活动中,巩固对“平均分”的认识。
3.练习三的第3题。(1)让学生根据题意准备学具卡片。
请学生说一说,准备了几个“梨”,为什么。
(2)让学生独立完成把梨平均放进4个盘里的任务。
(3)交流。请学生说一说分的过程和结果。
四、总结
1.请学生回忆:这节课学习了什么知识?
2.教师总结:这节课我们知道了什么叫平均分,还学会把一些东西平均分成几份。要把一些东西平均分成几份,可以每次每份放一个,也可以每次每份放两个„„最后,每份分得同样多。
教学反思:学生的数学学习能力是一个亲身实践,参与知识的产生与形成的过程。在教学中教师以学生和学生的生活经验为资源,采用小组合作交流的学习方式和学生喜欢的形式让学生积极地学、主动的学。力求在教师的启发引导下,充分发挥学生的主动性。发挥小组合作学习的功能,给学生营造一种民主、和谐的学习氛围,让学生敢于发表自己的看法和意见,使他们的情感信心在交流中得到发展,对知识的认识得到不断的拓展,为学生提供一个展示自我、体现个性的良好时机,让每位学生都得到发展,获得学习的乐趣。
第二课时:平均分的认识
(二)教学内容:巩固“平均分”。(教科书第15页的例题3。)
教学目标:
1.巩固“平均分”的概念,知道平均分就是每一份分得结果同样多。
2.初步体验除法运算与生活实际的密切关系。
3.通过分一分活动,培养学生动手操作能力和初步的抽象概括能
力。
教具准备:筷子、苹果、盘子、小棒、计算机课件。
教学过程设计:
一、复习
1.把12个苹果平均放在4个盘中,想一想应该怎样放?
把12个苹果放在4个盘中,想一想应该怎样放?
比较:这两句话一样吗?不同点是什么?
(强调“平均分)
二、新授课
1.出示教科书第15页的例题3。计算机课件演示教科书第15页的例题3的画面。
请一个同学用自己的话说一说画面的内容。(每条船限乘4人,24人要租几条船?)
教师:每4人为一小组讨论一下,应该租几条船?
学生汇报:每条船限乘4人,就是每条船只能坐4个人,所以每份是4人;那24人里包含有6个4人,所以应该租6条船。
教师:如果每条船限乘6人,那24人要租几条船?(让学生自己动手分一分,再说一说你是怎样分的?)
2.练习:科教科书第15页的做一做。
首先让学生观察画面:图上画的是什么?
提问:一共有几只小动物?每位一双,一双是几根?小熊有12根筷子,每份是2根,可以分几份?够分吗?
教师:这一道题就是问12里面有几个2。
三、巩固练习
1.完成教科书第17页练习三的第4题。
用情境图呈现分萝卜活动。练习时,先让学生观察画面,并根据画面提供的信息和问题,确定“把多少个萝卜平均分给小兔”“按每只小兔几个萝卜来分”,给学生自主探索的空间。在学生明白把16个萝卜,按每只小兔4个萝卜分之后,让学生独立“圈一圈”完成分萝卜任务。然后让学生交流分的过程和结果,比如学生说出“没4个萝卜圈在一起„„”通过圈和说,让学生进一步了解平均分的方法,加深对平均分的认识。
2.完成教科书第17页练习三的第5题。
让学生独立完成后,问:你是怎样想的?(有18个香蕉,平均分给6只小猴,每只小猴可以分几个?就是把18平均分成6份每一份是多少?)
提问:香蕉的数量都是18个,为什么两次每只猴子分的数量不一样呢?(因为平均分的份数不同,所以每一份也就不同。总数相同平均分的份数越多每份就越少,平均分的份数越少每份就越多。)
注意让学生交流、展示平均分的结果,促使学生在头脑中形成平均分的表象。
教学反思:这节课充分体现了 教师的主导作用和学生的主体作用。学生始终积极、主动参与学习过程,在自主探索‘合作及交流的过程中解决问题’教师让学生在交流中,欣赏同学解决问题的办法,体验成功,进一步理解平均分的方法,感知平均分在生活中的 应用,使学生感受到生活的数学,数学在生活中的作用
第三课时:除法的含义及读写法
教学内容:学习除法的含义及读写法。教科书第18页的例题4。
教学目标:
l.使学生知道除法的含义,懂得把一个数平均分成几份,求一份
是多少用除法计算。
2.使学生初步学会除法的算式和写法。
教具准备:教科书第18页的例题4的图片,学具。
教学过程设计:
一、引入新课
1.出示12个竹笋和4个篮子。
再出示题目:把12个竹笋平均放在4个盘子里,每盘可以放几个?
提问:平均放在4个盘子里是什么意思?(强调每盘要放同样多)
学生独立分竹笋,然后汇报分的结果:先把竹笋每盘放1个,每次分完,再把剩下的竹笋按照前面的方法继续分,直到分完为止。分的结果是每盘放3个。
小结:把12个竹笋,放在4个盘子里,就是把12个竹笋平均分成4份,每份是3个。
教师:像这样把12个竹笋平均放在4个盘子里,或把15个橘子平均分成5份等,都是属于把一些东西平均分成几份,求一份是多少的问题,都是平均分,在数学上我们用一种新的方法——除法来表示。(板书课题:除法)
二、新授课
1.以前我们学过加法、减法、乘法的符号,那今天我们学习除法,除法的符号是“÷”。
指导书写:写除号时,先画一短横,上下各一点,横线要平直,上下两点要对齐。
2.出示教科书第18页的例题4。
教师:“把12个竹笋平均放在4个盘子里,每盘放几个?”这道题应该怎样列式?
①要分的竹笋是几个?(12个)把12写在除号的前面。
②把12平均分成几份?(4份)把4写在除号的后面。
③每份是几?(是3)把3写在等号的后面。
教师一边说一边板书:12÷4=3
④教师再让学生回忆刚才的除法算式是怎样列的?让同桌的同学互相说一说。
⑤教师:12÷4=3这个除法算式“表示把12平均分成4份,每一份是3。”这个算式读作:12除以4等于3。
⑥让学生自己说一说这个除法算式表示什么?并读一读算式。再互相说一说。
3.出示:15÷3=5
教师:请一个同学读一读这个除法算式。(15除以3等于5)请一个同学说一说这个除法算式表示什么?(表示把15平均分成3份,每一份是5)
这一节课学了什么?
三、巩固练习。
1.完成教科书第18页的做一做。
提问:一共有多少块饼干?平均分给几个人?每人分几块?怎样列除法算式?(要分的饼干是18块,除号前面写18;平均分给3个人,除号后面写3;每人分6块,等号后面写6)请一个同学读一读这个除法算式。(18除以3等于6)这个除法算式表示什么?(把18平均分成3份,每一份是6)
通过让学生平均分、写算式,再次体会除法的意义和巩固除法算式的写法和读法。
可用同样的方法完成下面两道小题。
2.完成教科书第20页练习四的第1题。
练习时,可以增加一些除法算式卡片,以增加学生练习的机会。同时,注意采用“开火车”“接力赛”“抽卡游戏”不同形式组织练习,让学生在愉快的练习活动中掌握知识。
3.完成教科书第20页练习四的第2题。
先让学生依据题意用学具卡片分一分,并交流分的结果。之后,让学生填写除法算式,并对照分苹果活动说出除法算式的实际含义。促使学生体会除法的意义。
提问:每只小熊分的同样多是什么意思?(平均分成2份)谁会列算式?为什么这样列算式?(因为是把6粒苹果平均分成2份每份是3,所以把要分的苹果的个数写在除号的前面,平均分给2只小熊,把平均分的份数写在除号的后面,每一份是3,3写在等号的后面。)
4.完成教科书第20页练习四的第3题。
让学生讨论后写算式,并说一说为什么这样列算式?(因为它是把10个西瓜平均分成2份,每一份事。因此把要分的西瓜的个数10个写在除号的前面;平均放在2个箩筐中,把平均分的份数2写在除号的后面,每一个箩筐中装5个,5写在等号的后面。让学生在练习中进一步了解除法的意义,巩固对除法算式的认识。
教学反思:教师在 教学时,把除法的概念的 教学放到生动具体的情境之中,体现了的新理念。
第四课时:认识除法的各部分名称
教学内容:教学除法各部分的名称。(教科书第19页的例题5。)
教学目标:
1.使学生知道除法的含义,懂得把一个数按照每几个分成一份,求能分多少份,也是用除法计算。
2.使学生掌握除法的各部分名称。
教具准备:教科书第19页的例题5的图片,学具。
教学过程设计:
《标准》中提出
一、引入新课
1.教师:今天我们继续学习除法的初步认识。
2.分小圆片:教师拿出8个小圆片
要把这些小圆片分给另一些同学,每个同学分2个,可以分给几个同学?接着教师让学生注意观察,老师是怎样分的。使学生知道,教师把小圆片先拿2个分给一个同学(教师分的时候要同时拿出2个小圆片分给另一位同学),再拿出2个小圆片分给第三位同学,最后拿出2个小圆片分给第四位同学。也就是每2个小圆片分给一位同学,分完后问学生:分给了几个同学?学生观察出:8个小圆片,每个同学2个小圆片,可以分给4个同学。
想一想:刚才老师是怎样分的?同桌的同学互相说一说。
二、新授课
1.出示教科书第19页的例题5。
(1)教师:每4个放一盘是什么意思?(每一份是4个竹笋)
(2)用自己的学具动手摆一摆20个竹笋,按每4个放一盘,可以放几盘?(学生动手操作,教师巡视,对操作错误的同学给予个别指导)
学生分完后,教师请一个同学到黑板前面来演示分的过程。(教师要强调四个四个的分,每4个放一盘,也就是每4个为一份)
(3)让学生回顾分的过程和结果,提问:我们刚才是怎样分的?分的结果是怎样?
小结:我们分竹笋的时候,把4个竹笋放一盘,求能放几盘?实际上就是把一个数量按照每几个分成一份,求能分成多少份,这种方法也叫以用除法来计算。
(4)指导算式的写法。
①竹笋的数量是20个,这是表示要分的数量,写在除号的前面。每4个放一盘,就是每份是4,写在除号的后面。分的结果是可以放5盘,5是分的份数,写在等号的后面。
板书,20÷4=5
②让学生说一说除法20÷4=5表示什么意思?(表示有20个,每4个分一份,分成了5份)
③认识除法各部分的名称。÷ 4 = 5
被除数 除数 商
(5)小结:今天我们继续学习了除法,就是把一个数量按照每几个分成一份,求能分成多少份,用除法来计算。并认识了除法各部分的名称。
2.练习;教科书第19页的做一做的第1题。
提问:一共有多少个小圆片?每堆几个小圆片?可以分成几堆?(先让学生动手摆一摆)
怎样列除法算式?(要摆的小圆片是12个,除号前面写12;每堆6个,除号后面写6;可以分成2堆,等号后面写2。)请一个同学读一读这个除法算式。(12除以6等于3)再说一说这个除法算式各部分的名称。这个除法算式表示什么?(把12按照每6个一份可以分成2份)
可用同样的方法完成下面两道小题。
3.练习。教科书第19页的做一做的第2题。
让学生自己说一说,再同桌的互相说一说。
三、巩固练习
1.完成教科书第20页练习四的第4题。
要分的糖葫芦有几串?那被除数应该写几?每个小朋友2串糖葫芦,表示什么?(做的时候让学生把每2个用铅笔圈一圈)除数应该写几?可以分几个小朋友?商应该写几?
完成后要学生说一说这个除法算式表示什么?
2.完成教科书第21页练习四的第5题。
学生独立完成后,教师讲评。
3.完成教科书第21页练习四的第6题。
要求学生认真读题,用自己的话说一说题目的意思,然后再列式。
教学反思:教师现复习旧知,为新知识做铺垫,然后设计了认识除法的教学活动,组织“分一 分,写一 写、读一读”的学习活动,以及让学生反复动手操作,多次经历用除法算式表示平均分的 过程,从而领悟除法的 意义,大部份学生已经能很好的 掌握本章的内容
第五课时:除法初步认识练习课
教学内容:
巩固除法的含义及各部分名称。(教科书第21~22页练习四的第7—10题。)
教学目标:
巩固除法的含义,及除法的各部分名称。为后面学习用2~6的乘法口诀求商打基础。
教学过程设计:
一、完成教科书第21页练习四第7题。
先让学生独立写出除法算式,然后再全班讲评。
(1)6除以3等于2。
6÷3=2(复习除法的读法)
(2)被除数是15,除数是3,商是5。
15÷3=5(复习除法的各部分名称)
(3)把20平均分成5份,每份是4。
20÷5=4(复习把一个数平均分成几份,求每份是多少用除法计算)
(4)9个苹果,每3个一份,分成了3份。
9÷3=3(复习把二个数量按照每几个分成一份,求能分成多少份也可以用除法来计算)
二、完成完成教科书第21页练习四第8题。
看图写算式。呈现给学生实物图,请学生写出乘法算式和除法算式。练习时,先借助画面情境调动学生的积极性,再让学生根据实物图写出乘法算式和除法算式。之后,让学生展示自己写出的算式,说一说每个算式表示的意思,使乘法、除法的内在联系自然渗透。
三、找朋友:完成教科书第22页练习四第9题。
一部分的同学拿口诀,一部分的同学拿乘法算式。先由拿乘法算 式的同学读算式,然后问“我的朋友在哪里”,拿口诀的同学就说“你的
朋友在这里”。也可交换着玩。
四、完成教科书第22页练习四第10题。
要学生自己独立完成,然后全班讲评。重点要问学生为什么这样列式?
教学反思:让学生参与到习题中去,加深理解除法的含义
第二单元 用2—6的乘法口诀求商
第一课时:用2—6的乘法口诀求商
(一)教学内容:教科书第23页例1,练习五的第1~3题。
教学目标: 1.初步学会用乘法口诀求商。
2.经历探索除法计算方法的过程,了解用乘法口诀想商的思路。
教具、学具准备:
例1情境图的放大图,按练习三的第3题制作“信箱”和“信”(算式卡片);每个学生准备12个○卡片。
教学过程设计:
一、复习
1.说出得数,并说出用哪句口诀。
6×2= 4×3= 2×5= 3×3=
2.填空。
2×()=4 3×()=6 4×()=8
()×3=12()×4=20 5×()=15
说一说()里的数是用哪句乘法口诀想出来的。
3.把12个○卡片平均分一分,并写出除法算式。
请学生交流自己的分法和写出的除法算式。
二、新课
1.引出除法算式12÷3。
呈现例1放大图,讲述猴妈妈给小猴分桃的事。
提出第(1)个问题:12个桃,每只小猴分3个,可以分给几只小猴?
请学生列出除法算式:12÷3。
2.探讨计算方法。
(1)引导:我们会用动手分一分的方法解决“可以分给几只小猴”的问题。如果不动手操作学具,怎样算出结果呢?请各小组探讨计算方法。
(2)交流。请学生说一说探讨出的计算方法。
(3)根据学生探讨的情况,给予积极评价。并且,突出强调:可以用乘法口诀想商。
3.尝试用乘法口诀求商。
(1)出示例1的第(2)个问题,并让学生列出算式。
(2)请学生用乘法口诀想:商几?
(3)交流。请学生说一说想商的过程和使用了哪句口诀。
(4)交流想商的过程。
根据学生的交流,教师重述:求12÷4的商,想4和几相乘得12,因为三四十二,所以商是3。
三、练习
1.练习五的第1题。依据画面请学生解决“每个小朋友几个气球”的问题。让学生说一说题意,再计算。
2.练习五的第2题。
(1)让学生根据画面信息,完成填空。
(2)让学生独立填写除法算式。
(3)交流。请学生说一说除法算式的实际含义,并说出,用哪句口诀想商。
3.练习五的第3题。
按题意组织送信游戏,说明要求:认真计算,商是几,就投进几号信箱。
请每个学生当选邮递员,并把“信”交给学生,让学生完成送信任务。
完成后,看一看每个信箱中的信,检查是否都送对啦。
最后,特别请学生观察哪几封信送进了1号信箱。并想一想,这些除法算式有什么特点。促使学生发现:被除数和除数相同,商是1。
四、总结
1.请学生谈收获。
2.教师总结:今天我们共同探讨了除法的计算方法。我们发现,可以用乘法口诀来求商。计算时,看除数和几相乘得被除数,就用那句口诀求商。我们在送信游戏中还发现,被除数和除数相同时,商是1。这节课小朋友学会了不少新知识。下节课我们继续学习除法计算,我相信小朋友会有更多的收获。
反思:引导学生在一系列的摆一摆、想一想、说一说、议一议的活动中,从具体问题向抽象算理进行了深入探究,并呈现出算法的多样化。最后通过比较让学生悟出用乘法口诀求商的算法最简便,促进学生对算法的掌握理解,沟通了乘法与除法之间的关系。这样的教学,既发展了学生思维,又培养了学生的探究精神和创新意识,大大地提高了课堂教学效率。
第二课时
学习内容:用2~6的乘法口诀求商。
学习目标:使学生初步学会用2~6的乘法口诀求商的方法,并能用2~6的乘法口诀进行一些比较简单的除法计算(被除数不超过36)。
学习过程:
1.按顺序背乘积不大于36的2~6的乘法口诀。
2.二()得八 二()一十()六十二 三()得九()三得六 三()十二
3.读出下面各除法算式,并说出每个除法算式中各部分的名称以及每个除法算式表示的意思。9÷3=3 8÷4=2
12÷3=4 l2÷6=2
4、让学生观察练习五的第1题,并独立完成后,再请学生说说你是怎样想的。
5、第2题请学生先从鸽子归巢的情境图中收集信息,完成填空。再让学生提出问题,并填写除法算式。
6、第3、5题采用游戏的形式进行。
7、第4、7题采用活动的形式进行练习。
8、第6、9题采用比赛的形式进行练习。
9、让学生打开课本阅读第8题。四人小组说说题意,并提醒学生用今天学习的方法计算。
10、教师提问,学生回答,再填写。如:要算12除以2等于几怎样想?用哪句口诀?在口诀的括号里应填什么?商是几?那么,12除以2等于几?在此基础上独立做“12÷
6=□”。教师巡视,注意对差生的辅导,集体订正。
11、第11题,教师说明题意,并带着学生先做。做题时,可以要求学生边计算边小声说一说思路,或说出用的是哪句口诀。如果想不起来用哪句口诀,可以看除法算式上面的乘法算式。教师巡视,集体订正。订正时,要让学生说是怎样想的。对于学习比较好的学生,可以让他们直接说口诀,不必再说“想几和几相乘得几”这一步,以简缩学生的思维。对计算有困难的学生,还应让他们按照先想乘法,再想口诀,最后得商的方法。使他们切实掌握用口诀求商的方法。
12、第12题是“平均分”的实际问题。先让学生根据直观图,口述要解决的问题和有关信息数据,再让学生独立解决提出的问题。
13、师生共同总结本练习课的内容。熟练总结出用乘法口诀求商的方法。
反思:用游戏,活动,比赛的形式进行练习,不 但巩固了所学知识,而且使学生也产生成就感,获得愉悦的体验。
第三课时
学习内容:用除法解决简单的实际问题。
学习目的:1.使学生能根据一幅图(分完的结果)写出两个除法算式,从而进一步理解除法的含义。
2.通过看一个除法算式,说出它表示的不同意思,使学生对除法的含义有比较全面的认识。
学习重、难点:能根据一幅图写出两个不同的除法算式。
教具、学具准备:教师准备8个球拍图,3捆萝卜图,以及16根小棒;学生准备18根小棒。
学习过程:
一、复习和准备
1.说一说平均分是怎样分物品的。
2.操作练习。先让学生拿出8根小棒,把它们平均分成4份。摆在桌子的左面。学生摆完以后,指名说一说是怎样摆的。教师根据学生的回答,在黑板上贴出小棒。并问:用什么方法计算?怎样列式?然后在小棒下面板书:
8÷4=2
再让学生拿出8根小棒,把它们按每2根一份,看能分成几份。摆在桌子的右面。学生摆完后,仿照上面的提问和教学过程,教师在黑板上贴出小棒,并写出除法算式:
8÷2=4
教师引导学生观察分得的结果和除法算式:看一看两次分小棒的结果相同吗?(不同。)它们的除法算式相同吗?(不相同。)为什么?(因为分的方法不一样,除法算式就不同。)如果只看分的结果,能确定是用哪一种方法分的吗?(不能。)今天我们就要学习:
看一幅图怎样写两个除法算式。
二、新课
教学例3。教师出示8个球拍图。说明意图:看图写出除法算式。先让学生分组讨论一下:看着这幅图怎样写出两个除法算式?为什么?然后多让几个学生发言。你能想出什么样的除法算式?(8÷4=2)你是怎样想的?(把8个球拍平均分成4份,每份是2个。)有多少同学同意这种写法?还有其他的写法吗?(8÷2=4)你是怎样想用?(8个球拍,每2个分成一份,分成了4份。)有多少同学同意这种写法?哪种写法对呢?有多少同学认为这两种写法都对?请两名认为可以写两个除法算式的同学说一说是怎样想的。此时,只要学生说的意思正确即可。语言暂时不要求过高。在学生说明理由时,还可以让他到黑板前具体分一下,使全班同学看到,分法不同。教师小结:由于两种分法不同,只看分的结果,我们不能确定是用哪一种方法分成的。通过今天的学习,我们知道看一幅图,能够根据不同的分法,写出两个不同的除法算式。
三、课堂练习
1.第29页“做一做”中的题目。先让学生观察图,说明题意。然后让学生独立写出两个除法算式。写完以后,教师要引导学生说一说每个除法算式表示的意思是什么。并引导学生说一说为什么能看一幅图写出两个除法算式。(只要意思正确即可。)
2、出示课本第29页的例题。先让学生说一说,然后让学生独立做。在做的过程中,可以要求学生边做边小声说一说每个算式所表示的意思。教师巡视,注意对差生的个别辅导。对于有困难的学生,可以让四人小组帮助。
3、如果又来了3人,每组平均应有几人?让四人小组合作完成。
四、小结今天我们学习了看一幅图写出两个除法算式,还练习了根据一个除法算式说出它表示的两种不同的含义。
反思:教师在复习和准备这个环节中,放手让学生动手操作,激发了 学生的学习兴趣,良好的开端是 成功的一半。然后在新授过程中,教师有意识沟通乘除法间的联系,在分析、比较的过程中潜移默化的培养了学生的数学思维,这体现了教师作为引导者的地位
第四课时
学习内容:求一个数里面有几个另一个数
学习目的:
1.通过操作,使学生知道“'求一个数里面有几个另一个数”用除法计算,进一步认识除法的含义。
2.带着复习已学的乘法口诀,为用乘法口诀求商做准备。
教具、学具准备:教师准备6个苹果和12块饼干的图片,若干张乘法口诀卡片。
学习过程:
一、复习
1.读出下面的除法算式。15÷3=5 10÷5=2 12÷3=4 8÷2=4
2.分别说出上面每个除法算式表示的意思。
二、新课
1.用圈一圈的方法来教学例题。教师出示6个苹果的图片(贴在黑板上)。同时口述题目:6个苹果,每2个一份,可分成几份?
教师说明:上节课我们已经学习了用实际动手分一分的方法,把一些物品按每几个一份分。今天我们学习用圈一圈的方法分物品。
教师演示圈的方法;把两个苹果圈起来,表示2个一份。然后提问:继续往下分,该怎样分?(再把2个苹果圈起来。)教师在黑板上再圈2个苹果。让学生注意教师是怎样圈的。
第五篇:人教版六年级下册数学教案
人教版六年级下册数学教案
人教版新课标六年级下册数学教案
认识负数
教学内容:
人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例
1、例2。
教学目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情
感和数学态度。
教学重、难点:
负数的意义。
教学过程:
一、谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?今天的数学课我们就从这个话题聊起。我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
二、教学新知
1.表示相反意义的量。
引入实例。
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子。
① 六年级上学期转来6人,本学期转走6人。
② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。
④ 一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。
尝试。
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
展示交流
2.认识正、负数。
引入正、负数。
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人,这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数;
这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写。其实,过去我们认识的很多数都是正数。
试一试。
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识。
说一说存折上的数各表示什么?
联系生活实际举出一组相反意义的量,并用正、负数来表示。
① 同桌交流。
② 全班交流。根据学生发言板书。
这样的正、负数能写完吗?
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负
分数,统称负数。
4.进一步认识“0”。
看一看、读一读。
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况。哈尔滨:-15 ℃~-3 ℃
北京:-5 ℃~5 ℃
深圳:12 ℃~23 ℃
温度中有正数也有负数,请把负数读出来。
找一找、说一说。
我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?为什么?
现在你能很快找出来吗?
说一说,你怎么这么快就找到了?
你能很快找到12 ℃、-3 ℃吗?
提升认识。
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
总结归纳。
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:
5.练一练。
读一读,填一填。
6.出示课题。
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?
根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。
7.负数的历史。
介绍。
其实,负数的产生和发展有着悠久 的历史,我们一起来了解一下:
“中国是世界上最早认识和运用负数的国家,早在2014多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:?两算得失相反,要令正负以名之。?古代用算筹表示数,这句话的意思是:?两种得失相反的数,分别叫做正数和负数。?并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”
交流。
简单了解了负数的历史,你有什么感受?
三、练习应用
今天,负数在我们的生产和生活中
依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。
课件逐一出示:
1.表示海拔高度。
通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_____________。
2.表示温度。
月球表面白天的平均温度是零上126℃,记作_________℃, 夜间的平均温度为零下150℃,记作_____________℃。
3.小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?
4.表示时间。
5. “净含量:10±0.1kg”表示什么意思?
四、总结延伸
1.学生交流收获。
2.总结。
简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。