高中数学 第1章 解三角形 课时5 正弦定理、余弦定理的应用(一)教案 苏教版必修5

时间:2019-05-15 05:21:51下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学 第1章 解三角形 课时5 正弦定理、余弦定理的应用(一)教案 苏教版必修5》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学 第1章 解三角形 课时5 正弦定理、余弦定理的应用(一)教案 苏教版必修5》。

第一篇:高中数学 第1章 解三角形 课时5 正弦定理、余弦定理的应用(一)教案 苏教版必修5

课时5 正弦定理、余弦定理的应用

(一)教学目标

正弦定理、余弦定理体现了三角形中边角之间的相互关系,学会在测量学、运动学、力学、电学等许多领域有着广泛的应用.培养学生空间想象能力和运算能力.教学过程: 解斜三角形应用题的一般步骤:

(1)分析:理解题意,分清已知与未知,画出示意图

(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型

(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解 [例题分析]

3、某人在M汽车站的北偏西20的方向上的A处,观察到点C处有一辆汽车沿公路向M站行驶。公路的走向是M站的北偏东40。开始时,汽车到A的距离为31千米,汽车前进20千米后,到A的距离缩短了10千米。问汽车还需行驶多远,才能到达M汽车站?

课时5巩固练习

1.如图,要测量河对岸A、B两点间的距离,今沿河岸选取相距40米的C、D两点,测得∠ACB=60°,∠BCD=45°,∠ADB=60°,∠ADC=30°,则AB的距离是 2.一船以226km/h的速度向正北方向航行,在A处看灯塔S在船的北偏东45,1小时30分钟后航行到B处看灯塔S在船的南偏东15,则灯塔S与B之间的距离为.3、如图,两条道路OA、OB相交成60角,在道路OA上有一盏路灯P,00

第1题

OP10米,若该灯的有效照明半径是9米,则道路OB上被路灯有效照明的路段长度是 米。

第3题

4.已知△ABC中,BC=2,AB+AC=3,中线AD的长为y,若以AB的长为x,则y与x的函数关系式是 ,并指出自变量x的取值范围.5.某观察站C在城A的南20西的方向,由城A出发的一条公路,走向是南40东,在C处测得距C为31千米的公路B上有一人正沿公路向A城走去,走了20千米之后,到达D处,此时C、D之间的距离为21千米,试问此人还要走几千米可到达A城?

C 0

0

A D 第5题 B

第二篇:必修5教案1.1正弦定理余弦定理

教学设计示例(第一课时)

一、教学目标

1.掌握正弦定理及其向量法推导过程;

2.掌握用正弦定理与三角形内角和定理解斜三角形的两类基本问题.

二、教学重点正弦定理及其推导过程,正弦定理在三角形中的应用;

教学难点正弦定理的向量法证明以及运用正弦定理解三角形时解的个数的判定.

三、教学准备

直尺、投影仪.

四、教学过程

1.设置情境

师:初中我们已学过解直角三角形,请同学们回忆一下直角三角形的边角关系: 生:RtABC中有abc 22

2acsinA

bcsinB

atanAb

AB90

ab sinAsinB

师:对!利用直角三角形中的这些边角关系对任给直角三角形的两边或一边一角可以求出这个三角形的其他边与其他角.

师:在直角三角形中,你能用其他的边角表示斜边吗?

生:在直角三角形ABC中,cabc。sinAsinBsinC

师:这个式子在任意三角形中也是成立的,这就是我们今天要学的正弦定理(板书正弦定理).

2.探索研究

(1)师:为了证明正弦定理(引导学生复习向量的数量积),ababcos,式子的左边与要证明的式子有相似之处吗?你能否构造一个可以用来证明的式子.

生:如图,在锐角ABC中,过A作单位向量j垂直于,则j与的夹角为90A,j与的夹角为90C。

由向量的加法可得



对上面向量等式两边同取与向量j的数量积运算,得到

j

ACCBjAB

9090C)

90A)

asinCcsinA

同理,过点C作与垂直的单位向量j,可得

cb sinCsinB

∴abc sinAsinBsinC

师:当ABC为钝角三角形时,设A90,如图,过点A作与AC垂直的向量j,则j与的夹角为A90,j与的夹角为90C,同样可证得

abc sinAsinBsinC

师:课后同学考虑一下正弦定理还有没有其它的方法证明?

师:请同学们观察正弦定理,利用正弦定理可以解什么类型的三

角形问题?

生:已知两角和任意一边,可以求出其他两边和一角;已知两边和其中一边的对角,可以求出三角形的其他的边和角。

(2)例题分析

例1在ABC中,已知c10,A45,C30,求b(保留两个有效数字)bc且B180(AC)105 sinBsinC

csinB10sin105∴b19 sinCsin30解:∵

例2在ABC中,已知a4,b42,B45,求A。abasinB1得sinA sinAsinBb2

∵ABC中ab∴A为锐角∴A30 解:由

例3在ABC中,B45,C60,a2(1),求ABC的面积S。解:首先可证明:SABC

这组结论可作公式使用。

其次求b边 1111ahabsinCbcsinAacsinB。2222

A180(BC)75

∴由正弦定理,basinBsinA2(31)(2)4 2

∴SABC11absinC2(31)4()623 222

3.演练反馈

(1)在ABC中,一定成立的等式是()

A.asinAbsinBB.acosAbcosB

C.asinBbsinAD.acosBbcosA

(2)在ABC中,若a

Acos2bBcos2cCcos2,则ABC是()

A.等腰三角形B.等腰直角三角形

C.直角三角形D.等边三有形

(3)在任一ABC中,求证a(sinBsinC)b(sinCsinA)c(sinAsinB)0 参考答案:(1)C;(2)D;(3)证:由于正弦定理:令aksinA,BksinB,cksinC代入左边得:左边=k(sinAsinBsinAsinCsinBsinCsinBsinAsinCsinAsinCsinB)0=右边

4.总结提炼

(1)三角形常用公式:ABC;S

弦定理以及下节将要学习的余弦定理。111absinCbcsinAcasinB;正222

a2RsinAabc(2);b2RsinB;2R(外接圆直径)sinAsinBsinCc2RsinC

a:b:csinA:sinB:sinC。

(3)正弦定理应用范围:

①已知两角和任一边,求其他两边及一角。

②已知两边和其中一边对角,求另一边的对角。

③几何作图时,存在多种情况。如已知a、b及A,求作三角形时,要分类讨论,确定解的个数。

第三篇:高中数学必修5第一章正弦定理

1.1.1正弦定理

(一)教学目标

1.知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

2.过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

(二)教学重、难点

重点:正弦定理的探索和证明及其基本应用。

难点:已知两边和其中一边的对角解三角形时判断解的个数。

(三)学法与教学用具 学法:引导学生首先从直角三角形中揭示边角关系:a

sinAb

sinBc

sinC,接着就一般斜

三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。

教学用具:直尺、投影仪、计算器

(四)教学设想

[创设情景]

如图1.1-1,固定ABC的边CB及B,使边AC绕着顶点C转动。思考:C的大小与它的对边AB的长度之间有怎样的数量关系?

显然,边AB的长度随着其对角C的大小的增大而增大。能否

用一个等式把这种关系精确地表示出来?

[探索研究](图1.1-1)

在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在RtABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数

abcsinA,sinB,又sinC1,A cabc则csinsinsinabc从而在直角三角形ABC中,CaB sinAsinBsinC的定义,有

(图1.1-2)

思考:那么对于任意的三角形,以上关系式是否仍然成立?

(由学生讨论、分析)

可分为锐角三角形和钝角三角形两种情况:

3如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=asinBbsinA,则同理可得从而

a

sin

b

sin,c

sinC

b

sinB,a

sinA

b

sinB

c

sinC

AcB

(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(证法二):过点A作jAC,C 由向量的加法可得ABACCB







则jABj(ACCB)∴jABjACjCBj

0

jABcos90A0jCBcos900C

∴csinAasinC,即

ac

bc

同理,过点C作jBC,可得

从而

a

sinA

b

sinB

c

sin

类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)

从上面的研探过程,可得以下定理

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即

a

sinA

b

sinB

c

sin

[理解定理]

(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使aksinA,bksinB,cksinC;(2)

a

sinA

b

sinB

c

sin等价于

a

sinA

b

sinB,c

sinC

b

sinB,a

sinA

c

sinC

从而知正弦定理的基本作用为:

①已知三角形的任意两角及其一边可以求其他边,如a

bsinA

; sinB

②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sinAsinB。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

ab

[例题分析]

例1.在ABC中,已知A32.00,B81.80,a42.9cm,解三角形。解:根据三角形内角和定理,C1800(AB)

1800(32.0081.80)

66.20;

根据正弦定理,asinB42.9sin81.80b80.1(cm);

sin32.00

根据正弦定理,asinC42.9sin66.20c74.1(cm).sin32.00

评述:对于解三角形中的复杂运算可使用计算器。

例2.在ABC中,已知a20cm,b28cm,A400,解三角形(角度精确到10,边

长精确到1cm)。

解:根据正弦定理,bsinA28sin400

sinB0.8999.因为00<B<1800,所以B640,或B1160.⑴ 当B640时,C1800(AB)1800(400640)760,asinC20sin760c30(cm).sin400

⑵ 当B1160时,C1800(AB)1800(4001160)240,asinC20sin240c13(cm).sin400

评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。

[随堂练习]第5页练习第1(1)、2(1)题。

abc

sinAsinBsinC

abc

分析:可通过设一参数k(k>0)使k,sinAsinBsinC

abcabc

证明出 

sinAsinBsinCsinAsinBsinC

abc

解:设k(k>o)

sinAsinBsinC

则有aksinA,bksinB,cksinC

abcksinAksinBksinC

从而==k

sinAsinBsinCsinAsinBsinC

例3.已知ABC中,A

600,a求

a

sinA

abc

2k,所以=2 sinAsinBsinC评述:在ABC中,等式

a

sinA

b

sinB

c

sinC

abc

kk0

sinAsinBsinC

恒成立。

[补充练习]已知ABC中,sinA:sinB:sinC1:2:3,求a:b:c

(答案:1:2:3)

[课堂小结](由学生归纳总结)(1)定理的表示形式:

a

sinAsinBsinC

或aksinA,bksinB,cksinC(k0)

(2)正弦定理的应用范围:

①已知两角和任一边,求其它两边及一角; ②已知两边和其中一边对角,求另一边的对角。

(五)评价设计

①课后思考题:(见例3)在ABC中,

b

c

abc

kk0;

sinAsinBsinC

a

sinA

b

sinB

c

sinC

k(k>o),这个k与ABC有

什么关系?

②课时作业:第10页[习题1.1]A组第1(1)、2(1)题。

第四篇:高中数学必修4平面向量复习5正弦定理余弦定理

5.5正弦定理、余弦定理

要点透视:

1.正弦定理有以下几种变形,解题时要灵活运用其变形公式.

(1)a=2RsinA,b=2RsinB,c=2RsinC;

abc(2)sinA=,sinB=,sinC=: 2R2R2R

(3)sinA:sinB:sinC=a:b:c.

可以用来判断三角形的形状,其主要功能是实现三角形中的边角关系转化,如常把a,b,c换成2Rsin A,2Rsin B,2Rsin C来解题.

2.判断三角形的形状特征,必须从研究三角形的边与边关系,或角与角的关系入手,充分利用正弦定理与余弦定理进行边角转化,由三角形的边或角的代数运算或三角运算,找出边与边或角与角的关系,从而作出正确判断.

3.要注意利用△ABC中 A+B+C=π,以及由此推得的一些基本关系式

BCAsin(B+C)=sinA,cos(B+C)=-sinA,sin=cos等,进行三角变换的运2

2用.

4.应用解三角形知识解决实际问题时,要分析和研究问题中涉及的三角形,它的哪些元素是已知的,哪些元素是未知的,应选用正弦定理还是余弦定理进行求解.

5.应用解三角形知识解实际问题的解题步骤:

(1)根据题意画出示意图.

(2)确定实际问题所涉及的三角形,并搞清该三角形的已知元和末知元.

(3)选用正、余弦定理进行求解,并注意运算的正确性.

(4)给出答案.

活题精析:

例1.(2001年全国卷)已知圆内接四边形ABCD的边长是AB=2,BC=6,CD=DA=4,求四边形ABCD的面积.

要点精析:本题主要考查三角函数的基础知识,以及应用三角形面积公式和余弦定理解三角形的方法,考查应用数学知识分析、解决实际问题的能力.

解:如图所示,连BD,四边形ABCD的面积

11S=SABDSCDB=AB·AD·sinA+BC·CDsinC,2

21∵ A+C=180°,∴ sin A= sin C,于是 S=(2×4+4×6)·sin A=16sin A. 2

222在△ABD中,BD=AB+AD-2AB·ADcosA=20-16cosA.

在△CBD中,BD2=CD2+BC2-2CD·BCcosC=52-48cosC.

213又cosA=-cosC, cosA=-, ∵ A∈(0, π), ∴ A=π, sinA=.232

3∴ S=16×=8.2

例2.(2004春北京卷)在△ABC中,a,b,c分别是∠A,∠B,∠C的对

边长,已知a,b,c成等比数列,且a2-c2=ac-bc,求∠A的大小及bsinB的c值。

要点精析:(1)∵ a,b,c成等差数列,∴ b2=ac.

又a2-c2=ac-bc,∴ b2+c2-a2=bc,在△ABC中,由余弦定理得

b2c2a21cosA==.∴ A=60°; 22bc

bsinA(2)解法1:在△ABC中,由正弦定理得sinB=,a

bsinBb2sin6032∵ b=ac,∠A=60°,∴ ==sn60=. cca2

11解法2.在△ABC中,由面积公式得bcsinA=acsinB,∵ b2=ac,22

bsinB3∠A=60°,∴ bcsinA=b2 sinB,∴ =sinA=.c2

例3.(2001年上海卷)已知a,b,c是△ABC中∠A,∠B,∠C的对边,S是△ABC的面积,若a=4,b=5,S=5,求c的长度.

13要点精析:∵ S=absinC,∴sinc=,于是∠C=60°或∠C=120°. 22

又∵ c2=a2+b2-2abcosC,当∠C=60°时,c2=a2+b2-ab,c

当∠C=120°时,c2=a2+b2+ab,c,∴ c

.练习题

一、选择题

tanAa

21.在△ABC中,若,则△ABC是()tanBb2

A.等腰(非直角)三角形B.直角(非等腰)三角形

C.等腰三角形或直角三角形D.等腰直角三角形

ABab2.在△ABC中,tan,则三角形中()2ab

A.a=b且c>2aB.c2=a2+b2且a≠b

2cD.a=b或c2=a2+b2

3.为测某塔AB的高度,在一幢与塔AB相距20 m的楼的楼顶处测得塔顶的仰角为30°,测得塔基B的俯角为45°,那么塔AB的高度是()

33A.20(1+)mB.20(1+)m 32

C.20(1+)mD.30m

4.设α,β是钝角三角形的两个锐角,下列四个不等式中不正确的是()

1A.tanαtanβ<1B.sinβ<2C.cosβ>1D.tan(α+β)

5.已知锐角三角形的三边长分别为2,3,x,则x的取值范围是()C.a=b=

A.1

C.0

56.△ABC的三边分别为 2m+3,m2+2m,m2+3m+3(m>0),则最大内角的度数为()

A.150°B.120°C.90°D.135°

二、填空题:

abc7.在△ABC中,已知A=60°,b=1,S△ABC=3,则 sinAsinBsinC

1138.△ABC的三边满足:,则∠B= abbcabc

4129.在△ABC中,已知sinA=,sinB=,则sinC的值是.51

310.在△ABC中,BC边上的中线长是ma,用三边a,b,c表示ma,其公式是.三、解答题

11.设a,b,c是△ABC中A,B,C的对边,当m>0时,关于x的方程b(x2+m)+c(x2-m)-

ax=0有两个相等实根,且sinCcosA-cosCsinA=0,试判断△ABC的形状。

12.已知⊙O的半径为R,若它的内接三角形ABC中,等式2R(sin2A-sin2C)=(2a-b)sinB成立,(1)求∠C的大小;

(2)求△ABC的面积S的最大值.

13.在△ABC中,∠C=60°,BC=a,AC=b,a+b=16.

(1)试写出△ABC的面积S与边长a的函数关系式;

(2)当a等于多少时,S有最大值并求出最大值;

(3)当a等于多少时,周长l有最小值并未出最小值.

14.在△ABC中,已知面积S=a2-(b-c)2,且b+c=8,求S的最大值.

CCCC15.在△ABC中,m(cos,sin),n(cos,sin),且m与n的夹角是. 22222

(1)求C;

73(2)已知c=,三角形面积 S=3,求a+b。22

第五篇:数学: 1.3 正弦定理、余弦定理的应用 教案(苏教版必修5)

www.xiexiebang.com

您身边的志愿填报指导专家

第 5 课时:§1.3 正弦定理、余弦定理的应用(1)

【三维目标】:

一、知识与技能

1.能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题;

2.体会数学建摸的基本思想,应用解三角形知识解决实际问题的解题一般步骤:①根据题意作出示意图;②确定所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案。

3.了解常用的测量相关术语(如:仰角、俯角、方位角、视角及坡度、经纬度等有关名词和术语的确切含义);综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题;

4.能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力

5.规范学生的演算过程:逻辑严谨,表述准确,算法简练,书写工整,示意图清晰。

二、过程与方法

通过复习、小结,使学生牢固掌握两个定理,熟练运用。

三、情感、态度与价值观

激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 【教学重点与难点】:

重点:(1)综合运用正弦定理、余弦定理等知识和方法解决一些实际问题;

(2)掌握求解实际问题的一般步骤. 难点:根据题意建立数学模型,画出示意图 【学法与教学用具】:

1.学法:让学生回忆正弦定理、余弦定理以及它们可以解决哪些类型的三角形,让学生尝试绘制知识纲目图。生活中错综复杂的问题本源仍然是我们学过的定理,因此系统掌握前一节内容是学好本节课的基础。解有关三角形的应用题有固定的解题思路,引导学生寻求实际问题的本质和规律,从一般规律到生活的具体运用,这方面需要多琢磨和多体会。【授课类型】:新授课 【课时安排】:1课时 【教学思路】:

一、创设情景,揭示课题

总结解斜三角形的要求和常用方法

(1)利用正弦定理和三角形内角和定理,可以解决以下两类解斜三角形问题: ①已知两角和任一边,求其它两边和一角;

②已知两边和其中一边的对角,求另一边的对角,从而进一步求其它的边和角(2)应用余弦定理解以下两类三角形问题: ①已知三边求三内角;

②已知两边和它们的夹角,求第三边和其它两个内角

二、研探新知,质疑答辩,排难解惑,发展思维

例1(教材P18例1)如图1-3-1,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D,测

第 1 页

版权所有@中国高考志愿填报门户 www.xiexiebang.com



您身边的志愿填报指导专家

得ADC85,BDC60,ACD47,BCD72,CD100m.设A,B,C,D在同一平面内,试求A,B之间的距离(精确到1m).解:在ADC中,ADC85,ACD47,则DAC48.又DC100,由正弦定理,得

DCsinADC100sin85AC134.05m.sinDACsin48在BDC中,BDC60,BCD72,则DBC48.又DC100,由正弦定理,得 DCsinBDC100sin60BC116.54m.sinDBCsin48在ABC中,由余弦定理,得

图AB2AC2BC22ACBCcosACB134.052116.5422134.05116.54cos7247

3233.95,所以 AB57m 答A,B两点之间的距离约为57m.本例中AB看成ABC或ABD的一边,为此需求出AC,BC或AD,BD,所以可考察ADC和BDC,根据已知条件和正弦定理来求AC,BC,再由余弦定理求AB.例2(教材P18例2)如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A处获悉后,测出该渔轮在方位角为45,距离为10nmile的C处,并测得渔轮正沿方位角为105的方向,以

9nmile/h的速度向小岛靠拢,我海军舰艇立即以21nmile/h的速度前去营救.求舰艇的航向和靠近渔轮所需的时间(角度精确到0.1,时间精确到1min).解:设舰艇收到信号后xh在B处靠拢渔轮,则AB21x,BC9x,又AC10,ACB45180105120.由余弦定理,得ABACBC2ACBCcosACB,2即21x109x2109xcos120.222222化简,得36x9x100,解得xh40min(负值舍去).32图1-3-2

BCsinACB9xsin12033由正弦定理,得sinBAC,所以BAC21.8,方位角为

AB21x1

4第 2 页

版权所有@中国高考志愿填报门户 www.xiexiebang.com

您身边的志愿填报指导专家

4521.866.8.答:舰艇应沿着方向角66.8的方向航行,经过40min就可靠近渔轮.本例是正弦定理、余弦定理在航海问题中的综合应用.因为舰艇从A到B与渔轮从C到B的时间相同,所以根据余弦定理可求出该时间,从而求出AB和BC;再根据正弦定理求出BAC.例3 如图,要测底部不能到达的烟囱的高AB,从与烟囱底部在同一水平直线上的C,D两处,测得烟囱的仰角分别为3512和4928,CD间的距离是11.12m,已知测角仪高1.52m,求烟囱的高。

四、巩固深化,反馈矫正

1.在四边形ABCD中,已知ADCD,AD10,AB14,BDA600,BCD1350,求BC的长 2.在四边形ABCD中,ABBC,CD33,ACB300,BCD750,BDC450,求AB的长 3.四边形ABCD中,ABBC,ADDC,且EAF600,BC5,CD2,求AC

4.我炮兵阵地位于A处,两观察所分别设于C、D,已知ACD为边长等于a的正三角形。当目标出现于B,测得CDB450,ACD750(A、B在CD两侧),试求炮击目标的距离AB。

5.把一根长为30CM的木条锯成两段,分别作钝角三角形ABC的两边AB和BC,且ABC120,如何锯断木条,才能使第三边AC最短?

0

五、归纳整理,整体认识

1.解斜三角形应用题的一般步骤:

(1)分析:理解题意,分清已知与未知,画出示意图

(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型

(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解

2.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题.3.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.六、承上启下,留下悬念

七、板书设计(略)

八、课后记:

第 3 页

版权所有@中国高考志愿填报门户

下载高中数学 第1章 解三角形 课时5 正弦定理、余弦定理的应用(一)教案 苏教版必修5word格式文档
下载高中数学 第1章 解三角形 课时5 正弦定理、余弦定理的应用(一)教案 苏教版必修5.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐