行程问题第三讲教案

时间:2019-05-15 06:11:12下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《行程问题第三讲教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《行程问题第三讲教案》。

第一篇:行程问题第三讲教案

行程问题(1)第 一 讲

一、兴趣导入(Topic-in): 今天我刚进家门,就发现桌子上放着一张百元大钞。平时老妈也不给什么零花钱,难道这次发慈悲了?想到这儿心中不禁一喜。当我拿起钞票时,发现底下还压着一张纸条,拿起来一看,上面写着:今天是你外婆生日,在家等我,我们一起去给外婆祝寿。注意——那一百块钱不是给你的,是为了引起你的注意!

二、学前测试(Testing): 问答题(口答)

1、什么是行程问题?

三、知识讲解(Teaching): 基础知识

小学行程问题是我们在小学应用题中经常会遇到的,我们在解决行程问题前,要牢记以下公式:

路程一定,时间和速度成反比

速度一定,路程和时间成正比

时间一定,路程和速度成正比

关键问题:确定行程过程中的位置 ———————————————————————————————————————————————————

1、甲乙两车同时从AB两地相对开出。甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。求AB两地相距多少千米 ?

2、一辆客车和一辆货车分别从甲乙两地同时相向开出。货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。甲乙两地相距多少千米

解:客车和货车的速度之比为5:4 那么相遇时的路程比=5:4 相遇时货车行全程的4/9 此时货车行了全程的1/4 距离相遇点还有4/9-1/4=7/36 那么全程=28/(7/36)=144千米

3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。求乙绕城一周所需要的时间?

解:甲乙速度比=8:6=4:3 相 遇时乙行了全程的3/7 那么4小时就是行全程的4/7 所以乙行一周用的时间=4/(4/7)=7小时

———————————————————————————————————————————————————

4、甲乙两人同时从A地步行走向B地,当甲走了全程的14时,乙离B地还有640米,当甲走余下的56时,乙走完全程的710,求AB两地距离是多少米?

解:甲走完1/4后余下1-1/4=3/4 那么余下的5/6是3/4×5/6=5/8 此时甲一共走了1/4+5/8=7/8 那么甲乙的路程比=7/8:7/10=5:4 所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5 那么AB距离=640/(1-1/5)=800米

5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。甲车每小时行75千米,乙车行完全程需7小时。两车开出3小时后相距15千米,A,B两地相距多少千米?

解:一种情况:此时甲乙还没有相遇 乙车3小时行全程的3/7 甲3小时行75×3=225千米

AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米 一种情况:甲乙已经相遇

(225-15)/(1-3/7)=210/(4/7)=367.5千米

6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?

———————————————————————————————————————————————————

四、强化练习(Training):

1、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?

2、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?

五、训练辅导(Tutor):

1、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?

2、甲每小时行驶9千米,乙每小时行驶7千米。两者在相距6千米的两地同时向背而行,几小时后相距150千米?

———————————————————————————————————————————————————

六、反思总结(Thinking):

———————————————————————————————————————————————————

课堂训练

1、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?

2、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?

3、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2,求二车的速度?

4、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?

5、甲、乙两车分别从a b两地开出 甲车每小时行50千米 乙车每小时行40千米 甲车比乙车早1小时到 两地相距多少?

———————————————————————————————————————————————————

家庭作业

1、两辆车从甲乙两地同时相对开出,4时相遇。慢车是快车速度的五分之三,相遇时快车比慢车多行80千米,两地相距多少?

2、甲乙两人分别从A、B两地同时出发,相向而行,甲每分钟行100米,乙每分钟行120米,2小时后两人相距150米。A、B两地的最短距离多少米?最长距离多少米?

3、甲乙两地相距180千米,一辆汽车从甲地开往乙地计划4小时到达,实际每小时比原计划多行5千米,这样可以比原计划提前几小时到达?

4、甲乙两汽车同时从相距325千米的两地相向而行,甲车每小时行52千米,乙车的速度是甲车的1.5倍,车开出几时相遇?

5、甲乙两辆汽车同时从两地相对开出,甲车每小时行驶40千米,乙车每小时行驶45千米。两车相遇时,乙车离中点20千米。两地相距多少千米?

———————————————————————————————————————————————————

第二篇:第三讲 行程问题之走走停停

第三讲 行程问题之走走停停

1、概念

在有些行程问题中,既有路程上的前后调头,又有时间上的走走停停,同时又有速度上的前后变化。遇到此类问题,我们应分析其中的运动规律,把整个运动过程分成几段,再仔细分析每一段中的情况,然后再类推到其它各段中去。这样既可使运动关系明确、简化,又可减少复杂重复的推理及计算。这类题抓住一个关键--假设不停走,算出本来需要的时间。

例:甲、乙两名运动员在周长400米的环形跑道上进行10000米长跑比赛,两人从同一起跑线同时起跑,甲每分钟跑400米,乙每分钟跑360米,当甲比乙领先整整一圈时,两人同时加速,乙的速度比原来快,甲每分比原来多跑18米,并且都以这样的速度保持到终点。问:甲、乙两人谁先到达终点?

2、典型例题

【例1】、龟兔进行10000米跑步比赛。兔每分钟跑400米,龟每分钟跑80米,兔每跑5分钟歇25分钟,谁先到达终点?

解答:龟所用的时间是1000080125(分钟),兔子跑的时间是1000040025(分钟),歇了(2551)25100(分钟),共用25100125(分钟)。所用的时间相同,因此同时到达。

【例2】、龟兔赛跑,全程6千米,兔子每小时跑15千米,乌龟每小时跑3千米,乌龟不停的跑,但兔子边跑边玩,它先跑1分钟后玩20分钟,又跑2分钟后玩20分钟,再跑3分钟后玩20分钟……问它们谁胜利了?胜利者到终点时,另一个距离终点还有多远?

解答:乌龟不停的跑,所以乌龟跑完全程需要632(小时),即120分钟,由于兔子边跑边玩,120205(12345)5,也就是兔子一共跑了12345520(分钟),跑了206015(5千米),即乌龟到达终点时,兔子刚刚跑了5千米,所以乌龟胜利了,领先兔子651(千米)

【例3】、环形跑道周长是500米,甲、乙两人按顺时针沿环形跑道同时、同地起跑,甲每分钟跑50米,乙每分钟跑40米,甲、乙两人每跑200米均要停下来休息1分钟,那么甲首次追上乙需要多少分钟?

A.60 B.36C.72D.103

解答:C。解析:追上的时间肯定超过50分钟,在经过72分钟后,甲休息了14次并又跑了2分钟,那么甲跑了2900米,乙正好休息了12次,知道乙跑了2400米,所以在经过72分钟后甲首次追上乙。

【例4】、甲乙两人同时从一条800环形跑道同向行驶,甲100米/分,乙80米/分,两人每跑200米休息1分钟,甲需多久第一次追上乙?

解答:这样的题有三种情况:在乙休息结束时被追上、在休息过程中被追上和在行进中被追上。很显然首先考虑在休息结束时的时间最少,如果不行再考虑在休息过程中被追上,最后考虑行进中被追上。其中在休息结束时或者休息过程中被追上的情况必须考虑是否是在休息点追上的。

由此首先考虑休息800÷200-1=3分钟的情况。甲就要比乙多休息3分钟,就相当于甲要追乙800+80×3=1040米,需要1040÷(100-80)=52分钟,52分钟甲行了52×100=5200米,刚好是在休息点追上的满足条件。行5200米要休息5200÷200-1=25分钟。

因此甲需要52+25=77分钟第一次追上乙。

【例5】、甲、乙两人分别从相距 35.8千米的两地出发,相向而行.甲每小时行 4 千米,但每行 30 分钟

就休息 5 分钟;乙每小时行 12 千米,则经过________小时________分的时候两人相遇.

122

解答:经过 2 小时 15 分钟的时候,甲实际行了 2 小时,行了 4×2=8千米,乙则行了1274

千米,两人还相距 35.8-27-8=0.8千米,此时甲开始休息,乙再行 0.8÷12×60=4分钟就能与甲相遇.所以经过 2 小时 19 分的时候两人相遇.

【例6】、甲乙两人同时从A地出发,以相同的速度向B地前进。甲每行5分钟休息2分钟;乙每行210米休息3分钟。甲出发后50分钟到达B地,乙到达B地比甲迟了10分钟。已知两人最后一次的休息地点相距70米,两人的速度是每分钟行多少米?(50米)

【例7】、在 400 米的环行跑道上,A,B 两点相距 100 米。甲、乙两人分别从 A,B 两点同时出发,按逆时针方向跑步。甲甲每秒跑 5 米,乙每秒跑 4 米,每人每跑 100 米,都要停 10 秒钟。那么甲追上乙需要时间是多少秒?

解答:甲实际跑 100/(5-4)=100(秒)时追上乙,甲跑 100/5=20(秒),休息 10 秒; 乙跑 100/4=25(秒),休息 10 秒,甲实际跑 100 秒时,已经休息 4 次,刚跑完第 5 次,共用 140 秒; 这时乙实际跑了 100 秒,第 4 次休息结束。正好追上。

3、课后练习

1、绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行,小王以每小时4千米的速度每走1小时后休息5分钟,小张以每小时6千米的速度每走50分钟休息10分钟,两人出发多长时间第一次相遇?(2时40分)

2、邮递员早晨 7 时出发送一份邮件到对面山里,从邮局开始要走 12 千米上坡路,8 千米下坡路.他上坡时每小时走 4 千米,下坡时每小时走 5 千米,到达目的地停留 1 小时以后,又从原路返回,邮递员什么时候可以回到邮局?

分析:从整体上考虑,邮递员走了12+8=20千米的上坡路,走了12+8=20千米的下坡路,所以共用时间为: 20÷4+20÷5=9(小时),邮递员是下午7+10-12=5(时)回到邮局。

3、小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的2倍,如果上山用了3时50分,那么下山用了多少时间?

分析:上山用了3时50分,即60×3+50=230(分),由230÷(30+10)=5……30,得到上山休息了5次,走了230-10×5=180(分).因为下山的速度是上山的2倍,所以下山走了180÷2=90(分).由90÷30=3知,下山途中休息了2次,所以下山共用90+5×2=100(分)=1时40分.4、某人上山时每走30分休息10分,下山每走30分休息5分。已知下山的速度是上山速度的1.5倍,如

果上山用了3时50分,那么下山用多少时间?(2时15分)

5、一辆汽车原计划6小时从A城到B城。汽车行驶了一半路程后,因故在途中停留了30分钟。如果按照原定的时间到达B城,汽车在后一半路程的速度就应该提高12千米/时,那么A、B两城相距多少千米? 分析:汽车行驶了一半路程即行驶了3小时,那么他后一半路程行驶了2.5小时,2.5小时比原来2.5小时多行驶2.5×12=30千米。则原来的速度为30÷(3-2.5)=60(千米)。那么A、B两地相距60×6=360(千米)

6、一辆汽车从甲地开往乙地,每分钟行 750 米,预计 50 分钟到达.但汽车行驶到路程的3/5时,出了故障,用 5 分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?

分析:当以原速行驶到全程的3/5时,总时间也用了3/5,所以还剩下50×(1-3/5)=20分钟的路程;修理完毕时还剩下20-5=15分钟,在剩下的这段路程上,预计时间与实际时间之比为 20 :15= 4 : 3,根据路程一定,速度比等于时间的反比,实际的速度与预定的速度之比也为 4 : 3,因此每分钟应比原来快750×4/3-750=250米.

7、一列客车和一列货车同时从两地相向开出,经过18小时两车在某处相遇,已知客车每小时行50千米,货车每小时比客车少行8千米,货车每行3小时要停驶1小时。问:两地之间的铁路长多少千米?(1488千米)

8、甲、乙两站相距420千米,客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米.客车到达乙站后停留1小时,又以原速返回甲站.则两车迎面相遇的地点离乙站有多少千米? 分析:两车相遇时,S和4202840千米,要用公式S和(v1v2)t,应使得两车的时间保持一致,而客车中途停留了1小时,可以看作货车提前行驶1小时,所以将此间货车行驶的40千米减去,取S和84040800千米,t客车行驶的时间800(4060)8小时,因此客车行驶了60848042060千米,相遇地点距离乙站60千米.9、一辆货车从甲地开往乙地需要7小时,一辆客车从乙地开往甲地需要9小时,两车同时从两地相对开出。中途货车因故停车2小时,相遇时,客车比货车多行30千米。甲、乙两地相距多少千米?(240千米)

第三篇:行程问题教案

行程问题

教学目标:

1.知道“速度”的表示法,了解“速度”的内涵。从实际问题中总结出速度、时间和路程间的关系。

2.能根据路程、时间与速度的关系,解决生活中的简单问题,提高分析问题和解决问题的能力。

3.让学生通过提出问题、解决问题,感受数学来源于生活,在交流评价中培养学生的自信心,体验到成功的喜悦。教学重、难点

重点:理解路程、时间与速度的关系。难点:理解速度的含义。教学过程:

一、从学生生活实际引入新知

1、说说你们每天是怎么上学的。

2、生活中,我们常常听到“汽车比自行车块”,谁比谁快,比较的是什么呢? 对学生的回答给予评价,并明确的告诉学生比较的是速度。

二、引导探究,自主学习

1、学生认真看课件,畅言其发现。

(1)学生了解生活中的其他交通工具的速度(2)“单位时间”的介绍。

(3)学习速度简单的表示法。

每分钟行225米,可以写作:225米/分

每小时行使160千米,可以写成:160千米/时。

(4)巩固练习

三、教学例

31、课件出示例3(1)学生独立解答,教师巡视,集体订正。

(2)说说这两道题都是已知什么,要求的是什么。(3)引申出“路程”的定义。

2、教师引导学生独自找出三者的关系:速度×时间=路程。

3、像研究关于速度、时间、路程三个数量之间的关系的应用题,我们叫它行程问题,板书课题。

4、速度、路程和时间三者之间还存在其它的数量关系式吗?

(小组讨论,交流,汇报)

5、师小结:我们知道了速度、时间、路程三个数量中任何两个量,都可以求出第三个量。

四、运用新知,巩固拓展,五、课堂总结

今天我们结合生活实际,学会了解答行程问题,希望同学们能够把它应用到实际生活中去。

六、布置作业

第四篇:行程问题教案

第七讲 行程问题

(一)今天,我说课的课题是:xx教育内部教材六年级《行程问题》。

一、首先我们来进行教材分析。

本节课的主要内容有:让学生理解并掌握路程、速度和时间三者之间的联系,正确的分析出题目中的数量关系;判断出题目是属于哪类行程问题,利用线段图求出对应时间、速度或者AB两地之间的距离,本节课贯穿了行程问题以后的整个教学,是学生进一步顺利掌握解答行程问题的基础,是行程问题领域的基础知识,是小升初考试的必考知识点。

二、学生分析(说学情)

从认知状况来说,学生在此之前已经学习了简单的相遇问题,会根据路程和速度,求出相遇时间,对于行程问题已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于较为复杂的行程问题的理解,学生可能会产生一定的困难,所以教学中应引导学生发现问题,解决问题。

三、教学目标

1、教学目标: 知识目标:

1、使学生理解相遇问题的意义,正确的分析出相遇问题中的路程、速度和时间之间的数量关系。

2、能借助线段图数形结合来理解题意,说出解题步骤,并灵活运用各种方法解答应用题。

能力目标:

1、通过讲练结合,培养学生逻辑思维能力、解决问题的能力。

2、通过设置问题情境,提高学生分析和解决问题的能力。

情感目标:

1、培养学生认真、细致的学习态度。

2、通过发现问题、解决问题的过程,培养学生合作精神,增强学生的求知欲。

2、教学重点:

学会分析、解答相遇问题的策略,灵活运用各种方法解答相遇问题。

教学难点:

相遇问题的数量关系的理解和解题思路的分析。

四、教具、学具准备:

为实现以上教学目标,突出重点,解决难点,充分发挥现代技术的作用,本节课运用多媒体辅助教学,为学生提供生动、形象、直观的材料,激发学生学习的积极性和主动性。

五、教法和学法分析

教法:

1、范例、结合引导探索的方法,例题由浅入深、由易到难、各有侧重,体现出让不同的学生在数学上得到不同发展的教学理念,激发学生的学习兴趣。

2、教师精讲、学生多练,体现了以学生为主体、教师为主导的教学原则。

学法:

1、主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象的综合能力。

2、反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培优补差,满足不同的需求。”

六、教学过程(说过程)

我将本节课分为三个部分。用约3分钟时间进行导入部分,主要是复习和引入新课。用约

10分钟时间进行正体部分。主要是通过讲练结合的方式完成前三道例题的学习。最后,用约2分钟的时间进行尾声部分,主要是小结和作业。

七、教学预测(反思)

根据以往的教学经验,学生在解答本节课的问题时,不会数形结合,所以在教学过程中要提醒学生画线段图,帮助理解题意;例2对应的作业题目和例题有点不同,会有少部分学生按部就班,不认真审题,看到题目就做,所以在布置作业时要提醒学生认真审题。

(一)、故事导入(课前检测)

两个男孩各骑一辆自行车,从相距2O千米的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只小鸟,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只小鸟如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O千米的等速前进,小鸟以每小时15千米的等速飞行,那么,小鸟总共飞行了多少千米呢? 提问:这个问题是求什么的?路程=速度×时间,小鸟的飞行时间就是两个男孩的相遇时间,相遇时间=路程和速度和,20(1010)1(小时)15115(千米)

再提问相遇问题和追及问题的基本公式。

速度和×相遇时间=总路程

总路程÷速度和=相遇时间 总路程÷相遇时间=速度和。

追及路程(路程差)=速度差×追及时间 追及时间=路程差÷速度差 速度差=路程差÷追及时间

设计意图:从生活中来,到生活中去,从学生熟悉的生活情境引入,让学生体会到生活中处处有数学,激发学生的学习兴趣和求知欲望.通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

(二)、知识呈现

1、A、B两个车站相距688千米,甲乙两车同时从A、B两站相向开出。甲车每小时行48千米,乙车每小时行56千米。5小时后,甲车到达途中的C站。再过多少小时,乙车也到达C 站?

解析:假设5小时后,甲车行到C点时,乙车行到D点。要求再过多少小时,乙车也到达C点,就要求出CD之间的距离。

(4856)5520(千米)(688-520)56(小时)3

答:再经过3小时,乙车也到达C站。

2、客车和货车同时从A、B两地相对开出,客车每小时行50千米,货车的速度是客车的80%,相遇后客车继续行了3.2小时到达B地。A、B两地相距多少千米?

分析:假设两车相遇在点C,根据题意可知,客车走完CB用3.2小时,可求出CB之间的路程,也是货车和客车相遇时所走的路程,从而求出相遇时间,再求出路程。

货车速度:50x80%=40(千米/时)

(千米)客车继续行3.2小时,行了503.2160

(5040)4360(千米)货车用时160÷40=4(小时)

答:A、B两地相距360千米。例

3、一辆小汽车和一辆摩托车,同时从甲镇开往相距396千米的乙镇,当摩托车到达乙镇时,小汽车离乙镇还有44千米。已知小汽车每小时行驶64千米,求摩托车比小汽车每小时快多少千米?

解析:由题意可知,摩托车行396千米所用的时间和汽车行驶(396-44)千米所用的时间一样,进而求出摩托车的速度。

小汽车的路程:396-44=352(千米)时间:352645.5(小时)

摩托车的速度:3965.572(千米/时)速度差:72-64=8(千米/时)或者:445.58(千米/时)

答:摩托车比小汽车每小时快8千米。

设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,体现出让不同的学生在数学上得到不同发展的教学理念。

通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入练习环节。

(三)、操练内化 我要来挑战1,2,3

(四)、课堂迁移延伸 例

4、例5

(五)、课堂总结

今天我们主要学习了行程问题,已知路程和速度,如何求出相遇时间,以及如何根据题意求A、B两地之间的距离,必须要把行程问题的三大要素全部找齐,再根据题意考虑运用对应知识点和公式来解答此类题目。

通过本节课的学习,我们懂得了新知识的得来是通过已学的知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们

能学会运用,善于用转化的思想来武装自己的头脑,思考问题。

设计意图:引导学生养成学习——总结——再学习的良好习惯,发挥自我评价作用,同时可培养学生的语言表达能力。

(六)、作业设计

考虑虑到学生的个体差异,以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。

在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。

以上是我对这节课的粗浅认识,衷心希望各位老师不惜赐教。

谢谢!

第五篇:简单行程问题教案

“简单行程问题”教学设计

金城江区第九小学

yinhaijin 【教学内容】

人教版四年级数学上册53页例5及相关练习【教学目标】

1、理解速度、时间、路程的意义和速度简便表示方法。

2、能发现速度、时间、路程三者的关系,并利用这个数学模型解决问题。

【教学重点】

理解速度、时间、路程三者的数量关系及速度简便表示法 【教学难点】用速度、时间、路程三者的数量关系解决问题 【教学准备】课件 【教学过程】

一、激趣引入(简短赛车视频)

同学们,今天老师带你们来到一个赛车现场,两辆车正在进行紧张激烈的越野比赛,你猜一猜哪辆车会获胜?结果如何呢?我们一起来看看(播放课件)。最终谁取得了胜利?为什么?在比赛的过程中,获胜车的速度较快,所以它取得最后的胜利。

到底什么是速度?速度与时间、路程之间有什么样的关系呢?这节课我们就一起来研究简单行程问题。(板书课题:简单行程问题)

二、探究研学

(一)自学课本53页

探究速度的意义和写法,速度、时间、路程之间的关系。请同学们现在打开课本53页,自学这一页的全部内容。先独立思考下面两个问题:

1.什么叫做速度?速度还可以怎样表示?

2.通过完成例3,你能发现速度、时间与所行的路程之间有什么 关系吗?

(速度×时间=路程)

再在小组内大声地交流自己的看法和合作完成学习记录卡,请组长拿出学习记录卡,大家有没有不明白的地方?现在开始学习。

学习记录卡

名称

速度

意义

写法 特快列车

每小时行160千米 小林步行

60米/分

普通列车

每小时行106千米 速度、时间和路程的关系是:

(二)小组学习成果展示 1.小组汇报速度的意义和写法

2.生生互动,让听汇报的学生提出自己的疑问 3.小组汇报速度、时间和路程之间的关系

三、质疑点拨

通过同学们的学习、汇报和相互之间的质疑,我们知道了什么是速度和速度的简便写法。如(结合课件小结)

1.像这些每分、每秒、每小时等单位时间内物体所走的路程叫做它的速度。

2.速度的简便写法可以用一条斜线把它分成两部分,左边是路程,右边是时间单位。这样表示一个物体的运动速度既简明又清楚。

另外,我们还知道了速度、时间和路程之间的关系: 3.……得到速度、时间和路程的基本关系是:速度×时间=路程(学生质疑:你还有不明白的地方吗?)

四、巩固提高(精练)1.速度的简便写法。

(1)课件出示课本P53做一做第1题(每人至少写出两道)。(2)独立完成后让学生汇报。并用手势表示自己的对错。并作 2 简单的评价。

(3)结合题目资源沟通数学与其它学科知识的联系。2.速度、时间和路程的基本关系

课件出示课本P53做一做第2题(口答)。

五、全课小结

1.这节课你学到了什么? 2.什么是单位时间?什么是速度? 3.路程、时间、速度的关系。

速度×时间=路程

路程÷时间=速度

路程÷速度=时间

六、课堂检测

1.判断题请你用手势“√”或“×”表示(课件出示)(1)一列火车行驶的速度为 110 千米/时,“110 千米/时”表示这列火车每小时行 110 千米。()(2)速度÷时间=路程。()(3)飞机飞行的速度为 12 千米/分,汽车行驶的速度为 80 千米/时,汽车的速度比飞机快。()2.解决问题(课件出示)

A.王叔叔从县城出发去王庄乡送化肥。去的时候用了3小时,返回时用了2小时。去时的速度只有40千米/小时,回来时快多了,是()千米/小时。

(1)从县城到王庄乡有多远?

(2)返回时平均每小时行多少千米?

B.一辆汽车的速度是43千米/时,从厦门出发, 4小时能否到达云水谣?

厦门→云水谣

160 千米

附:板书设计

简单行程问题

每小时、每分钟、每秒、每天、每月、每年……叫单位时间 单位时间里所行驶的路程叫速度 速度的简便写法:80千米/时 速度、时间和路程的基本关系是:

速度×时间=路程 路程÷时间=速度 路程÷速度=时间

2018.10.18

下载行程问题第三讲教案word格式文档
下载行程问题第三讲教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    五年级行程问题教案

    行程问题 第一部分 知识梳理 1、路程=速度×时间 速度=路程÷时间 时间=路程÷速度 2、相遇问题中,总路程=甲的路程+乙的路程 =甲的速度×相遇时间+乙的速度×相遇时间 =(甲......

    七年级行程问题教案

    (一)行程问题:基本公式时间×速度=距离 行程问题包括相遇问题、追击问题、跑道赛跑、火车相遇、水中行船、时钟问题,还有相关的判断问题。 关键点:位置、距离、时间、速度。......

    行程问题教案2

    教 案 课前练习一项工程,甲独做要18天,乙独做要15天,二人合做6天后,其余的由乙独做,还要几天做完?一项工程,甲单独做16天可以完成,乙单独做12天可以完成。现在由乙先做3天,剩下的由......

    第三讲 韵母 教案

    第三讲 韵 母(一) ——单韵母与复韵母 教学目标: 1、能认读6个单韵母和9个复韵母,并将其与声母做拼读。 2、能按要求书写6个单韵母和9个复韵母,注意书写规范。 3、能看图说一句......

    党课教案第三讲

    坚定理想 当代大学生与中国共产党一、当代大学生的历史使命 二、中国共产党历来高度重视青年工作 三、青年大学生应该积极争取加入中国 共产党▓ 大学生是国家最宝贵的人......

    行程问题教案(共五篇)

    课题名称:行程问题 教学目标:1:理解相遇、追及问题的中路程、时间、速度的关系 2:能准确地画出线段图 3:能结合线段图来抓住路程时间速度的关系来求解 教学重点与难点: 1:掌握......

    行程问题练习课教案

    淮阳县外国语实验小学六年级 胡建东 行程问题练习课 教学目标: 1、 知识与技能:利用行程问题中的路程、速度、时间的关系列方程解应用题,感知数学在实际生活中的用途。 2、 能......

    教案解决行程问题5篇

    解决行程问题的策略 教学内容:解决行程问题的策略(线段图) 教学目标: 让学生在解决行程问题以及类似的实际问题的过程中。学会用画图的方法整理相关信息,感受画图法是解决问题......