第一篇:浅谈港口安川变频器常见故障分析及处理
浅谈桥吊安川变频器常见故障分析及处理
宁波港集团北仑第三集装箱有限公司 邬勇勇 俞浩焕 张跃 陈旭融
摘 要:本文通过介绍港口桥吊上常用676H5安川变频器结构及工作原理的基础上,对其常见故障进行分析,并提出相应的排除措施及更换硬件设备注意事项。关键词:桥吊 安川变频器 故障 注意事项
1.序言
桥吊是集装箱码头上最重要的港口设备,安川变频器在桥吊上的使用广泛,保养与故障处理是大家共同探讨的话题。桥吊上的676H5安川变频器由主回路和控制回路构成:主回路是给异步电动机提供调频调压电源的电力变换部分,主要由三相或单相整流桥、平波电抗器、滤波电容器、逆变器、限流电阻、接触器等元器件组成;控制回路有主控制板、电压电流检测回路、驱动板、转速检测回路等;保护回路又可分为变频器保护和异步电动机的保护。
为更好使用676H5变频器,首先得了解变频器有哪些保护作用,如瞬时过电流保护、过载保护、再生过电压保护、瞬时掉电保护等保护功能。676H5变频器自身有完善的监测保护程序,能根据电机参数,判断出电机运转中的异常,自动记录发生异常时电机的各项参数及变频器的运转参数(电流,电压,频率,功率,输入输出端子状态等),便于维修人员判断分析故障。
2.676H5安川变频器调速结构及其工作原理
图1 676H5安川变频器结构图
根据n=120f/p(其中n=电机转速、f=电机定子侧供电频率、p=电机极对数)可知,在异步电动机的极对数不变情况下,只要改变电源频率f,就可以实现对异步电动机的调速。在桥吊上,给异步电动机供电(电压、频率可调)的主回路中包含有安川变频器,该变频器工作形式为交-直-交,而给变频器提供各种控制信号的回路称为控制回路,如图1所示,其包括以下几个部分:(1)整流桥:使三相交流电UAC经过整流变成直流电UDC。
(2)充电抑制电阻R1:据公式i=(UAC-UDC)/r可知,因r为整流桥等值电阻很小,因此充电电流I变成很大。为了防止电解电容被击穿,必须加装充电抑制电阻R1与旁路接触器MC,由此起限流作用。
(3)旁路接触器MC:当电容充电达到80%时,MC闭合,将R1旁路,所以说该元件必须定期保养。
(4)滤波电容C:具有储能功能,寿命可达5~8年,当电网电压跌落30%时,可以维持电容两端电压UC达到10s供变频器工作;当电网电压跌落50%时,可以维持电容两端电压UC达到2s供变频器工作。
(5)充电指示灯:当充电电压达到27V以上,该指示灯会亮,所以在切断变频器电源后,还应等该指示灯完全熄灭时,才可以维修变频器内部元件,以免触电。
(6)逆变回路(桥)主器件(IGBT):全称为大功率双极性绝缘栅场效应馆,包括栅极、源极、漏极,其特点为电压控制器件,门极触发功率低、开关频率高、特性抑制性好,即通态压降、断开漏电流都很小,寿命可达20年。
(7)IGBT的两端并联一个阻容吸收回路,可以抑制高频谐波,因为电动机是感性负载,di/dt不允许变化很快。
(8)电流互感器CT采集主电路电流,作为电流调节器ACR使用,当发生过载等异常时,为了防止异步电动机和逆变器损坏,使逆变器停止工作或抑制电压、电流值。
(9)主控板:为32位微处理器,将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。
(10)驱动板:为驱动逆变器主器件IGBT的电路,其与控制电路隔离,控制IGBT的导通、关断,如果IGBT损坏了,一般说连带的驱动板也会损坏。
(11)速度检测器PG:为脉冲编码器,装在异步电动机输出轴上,采集速度信号,连接到变频器内部PG卡,把速度传给运算回路,使电动机按给定指令运转。(12)通讯板:同PLC 216模块通讯,交换各种信号。
3.676H5安川变频器故障代码及处理方式
676H5安川变频器在电气柜门上安装有手操作器,会显示各种参数值及发生的故障代码,现根据我们的经验分析如下:
(1)OC故障即过流,其具有瞬间记忆功能,人为不可设定,主要用于逆变器负载侧短路等,流过逆变器器件的电流达到额定电流2.7~3倍时,瞬时停止逆变器运转,并切断电源;变流器的输出电流达到异常值,也将同样停止逆变器运转。具体处理可按以下逐项检查: ① 加速时间是否太短;
② 力矩提升参数是否太大;
③ 负载外部是否短路、是否过重。比如起升机构有两台电机拖动,其中一台坏了,另一台就可能出现过流;
④ PG检测回路是否异常,包括PG卡及脉冲编码器;
⑤ 电流互感器是否异常;
⑥ 主功率器件IGBT是否异常;
⑦ 如果以上都没问题,可以断开输出侧的电流负感器和直流检测点,复位后运行,还出现过流,很可能是主控板或触发板出现故障。
(2)OL故障即过载,主要用于逆变器输出电流超过额定值,且持续流通超过规定的时间,为了防止逆变器器件、电线等损坏,要停止变频器工作。具体分以下三种:
① 电流超过额定电流150%且持续60s,就报OL1故障,说明电机过载;
② 电流超过额定电流180%且持续10s,就报OL2故障,说明变频器过载;
③ 电流超过额定电流200%且持续5s,就报OL3故障,说明系统过载,也就是钢结构力矩保护。
不管哪一种过载,都是由于负载的GD2(惯性)过大或因负载过大使电动机堵转而产生,所以说对于已经投入运行的变频器出现的故障,就必须检查负载的状况;对于新安装的变频器出现这种故障,很可能是V/F曲线设置不当或电机参数设置有问题。比如一台新安装的变频器,其驱动的是一台额定参数是220V/50Hz的变频电机,而变频器出厂时设置为380V/50Hz,导致电机运行一段时间后出现磁饱和使电机转速降低、发热而过载。
(3)变频器显示GF即负载对地短路,其具有瞬态功能,也就是三相相电流偏差大于50%额定电流。具体原因有以下几种:
① 电机绝缘不好或三相相间不平衡;
② 变频器异常,主要为控制回路部分。接地故障也是平时会碰到的故障,在排除电机接地存在问题的原因外,最可能发生故障的部分就是霍尔传感器了,霍尔传感器由于受温度,湿度等环境因数的影响,工作点很容易发生飘移,导致GF报警。
(4)OH故障即变频器过热,可分为OH1与OH2。原因分析如下:
① 变频器柜内部两套风机是否异常;
② 环境温度过高否;
③ 频繁过载否;
④ 热敏检测器件是否粉尘过多等异常现象。
(5)OS故障即超速,分硬件与软件超速,设定值分别为额定转速的115%与110%,此时应检查PG反馈正常否。
(6)UV故障即欠压,也就是说检测出直流母线电压故障。一般设计者在设计变频器的启动电路时,为了减少变频器的体积而选择小限流电阻R1,其阻值在10~50Ω、功率为10~50W。当变频器的交流侧输入电源频繁接通或者旁路接触器MC的触点接触不良,都会导致限流电阻R1烧坏而出现欠压故障。另外还有其它可能:
① 能量回馈装置异常;
② 驱动板检测异常;
③ 若实际欠压,可用参数U1-07中DC BUS来监测。
(7)OV 故障即过压,也就是直流母线DC BUS电压超过容许值,具体原因分析如下:
如果变频器驱动大惯性负载,尤其重载下放,逆变器使电机快速减速时,即再生制动过程中,变频器的输出频率按线性下降,而负载电机的频率高于变频器的输出频率,负载电机变频器处于发电状态,机械能转化为电能,并被变频器直流侧的平波电容吸收,当这种能量足够大时,就会产生所谓的“泵升现象”,变频器直流侧会超过直流母线的最大电压而跳闸。
其处理方法:可以采取停止变频器运转或停止快速减速方法,防止过电压,此时应将减速时间参数设置长些或增大制动电阻或增加家制动单元。当然在QC中,还应检查能量回馈单元(CONVERTER);也有可能网侧容量不够,即高压侧变压器容量不够,容易产生系统谐振。(8)PGO故障即速度检测开路,应检查脉冲编码器及PG卡。
(9)变频器无故障显示,但不能高速运行。一台桥吊大车机构变频器运行正常,就是电机无法达到高速运行,经检查INVERT无故障,参数设置正确,调速输入信号正常,经上电运行测试,INVERT直流母线电压只有450V左右(正常值为580~600V),再测输入侧,发现缺一相,故障原因是输入侧一相接触不良造成。造成输入缺相不报警仍然在低频段工作,是因为该变频器母线电压下限是400V,当母线电压降至400V以下时,变频器才报告直流母线低电压故障。当两相输入时,直流母线电压为380V×1.2=452V,大于400V,在变频器不运行时,由于平波电容的作用,直流电压也可达到正常值,所以变频器不会报故障。而变频器采用PWM控制技术,调压调频的工作在逆变桥完成,因此在低频段输入缺相仍可以正常工作,但因输入电压、输出电压低,造成电机转矩低,频率上不去,就无法高速运行。(10)SC故障
SC故障是安川变频器较常见的故障。IGBT模块损坏,这是引起SC故障报警的原因之一。此外驱动电路损坏也容易导致SC故障报警。安川在驱动电路的设计上,上桥使用了驱动光耦PC923,这是专用于驱动IGBT模块的带有放大电路的一款光耦,安川的下桥驱动电路则是采用了光耦PC929,这是一款内部带有放大电路,及检测电路的光耦。此外电机抖动,三相电流,电压不平衡,有频率显示却无电压输出,这些现象都有可能是IGBT模块损坏。IGBT模块损坏的原因有多种,首先是外部负载发生故障而导致IGBT模块的损坏如负载发生短路,堵转等。其次驱动电路老化也有可能导致驱动波形失真,或驱动电压波动太大而导致IGBT损坏,从而导致SC故障报警
还有开关电源损坏是众多变频器最常见的故障,通常是由于开关电源的负载发生短路造成的,在众多变频器的开关电源线路设计上,安川变频器应该说是比较成功的。676H5变频器采用了两级的开关电源,有点类似于富士G5,先由第一级开关电源将直流母线侧500多伏的直流电压转变成300多伏的直流电压。然后再通过高频脉冲变压器的次级线圈输出5V、12V、24V等较低电压供变频器的控制板,驱动电路,检测电路等做电源使用。在第二级开关电源的设计上安川变频器使用了一个叫做TL431的可控稳压器件来调整开关管的占空比,从而达到稳定输出电压的目的。前几期我们谈到的LG变频器也使用了类似的控制方式。用作开关管的QM5HL-24以及TL431都是较容易损坏的器件。此外当我们在使用中如若听到刺耳的尖叫声,这是由脉冲变压器发出的,很有可能开关电源输出侧有短路现象。我们可以从输出侧查找故障。此外当发生无显示,控制端子无电压,DC12V,24V风扇不运转等现象时我们首先应该考虑是否开关电源损坏了。
4.676H5变频器硬件故障修理注意事项
(1)IGBT的更换。要测量各路阻值是否平衡。
(2)驱动板的更换,需仔细核对插头与插座的编号是否一致,是否有插座式的。
(3)主控板的更换。更换主控板后,需设置变频器的应用参数(E1),电机参数(E2),保护参数(L1、L6、L7)。
(4)PG卡的更换。需核对接线端子是否正常。如果换卡后电机启动有震动,不能正常旋转,则需将A、B相对调。
(5)通讯板的更换,需核对变频器硬件站号设置的拨码开关。检查通讯指示灯是否正常。(6)676H5系列变频器,通讯板是一单独CPU,更换后,需上传配置程序(无硬件站号开关)。(7)由于安川变频器内部的螺栓材料材质较软,如果工具与之配合误差较大就容易造成螺栓头损坏,建议给变频器维修人员配备进口或合资品牌的专用工具。
(8)电解电容和散热器为铝合金材料,上螺栓时要注意手势和力度,以免造成烂牙。如果电解电容发生烂牙一定要重新攻丝,否则会造成变频器再次损坏。
(9)由于桥吊变频器大多为现场维修,如不小心将螺栓掉落在变频器内或地沟内就比较麻烦,所以螺丝刀头必须带磁性。
(10)安装过程中一定要根据电路图仔细核对,并在通电前用万用表二极管档核对U、V、W三相输出回路检测值是否一致。
(11)在拆装变频器时清点螺栓数量是否一致,可以作为是否正确安装的辅助依据。
5.结束语
采用676H5安川变频器作为桥吊上异步电机驱动器,尽管其可靠性高,但如果使用不当或偶发事件,也会造成变频器损坏。要想使变频器稳定工作,首先熟悉变频器的结构原理,了解常见故障及其分析方法,其次日常的精心维护,只要保养到位,也可降低变频器的故障率,减少停机时间,使变频器以最佳的工作状态充分发挥效力。
参考文献
[1] 蒋朝华《变频器的常见故障及维修对策变频器世界》, 2006(6):123-124 [2] 张雅丹,于火红《变频器的常见故障与维修》《中国商界》, 2013:392-392 [3] 王虎.浅谈变频器的常见故障.《民营科技》,2014年第8期
[4] 刘建国 变频器的控制电路及几种常见故障分析《电气应用》, 2004, 18(6):18-21 [5] 张淑家.潘萌变频器的控制电路及几种常见故障分析《城市建设理论研究:电子版》, 2013(7)[6] 戴嵘 浅析变频器的选型控制电路常见故障《贵州电力技术》, 2007(2):64-66 [7] 张伟 变频器的控制电路注意事项及几种常见故障分析《石河子科技》, 2006(4):20-2]
第二篇:变频器常见故障及解决方案
·
变频器故障判断及处理
1.1
逆变功率模块的损坏
1.1.1
判断
逆变功率模块主要有IGBT、IPM
等,检查外观是否已炸开,端子与相连印制板是否有烧蚀痕迹。用万用表查C-E、G-C、G-E
是否已通,或用万用表测P
对U、V、W
和N
对U、V、W
电阻是否有不一致,以及各驱动功率器件控制极对U、V、W、P、N的电阻是否有不一致,以此判断是哪一功率器件损坏。
1.1.2
损坏的原因查找
(1)器件本身质量不好。
(2)外部负载有严重过电流、不平衡,电动机某相绕阻对地短路,有一相绕阻内部短路,负载机械卡住,相间击穿,输出电线有短路或对地短路。
(3)负载上接了电容,或因布线不当对地电容太大,使功率管有冲击电流。
(4)用户电网电压太高,或有较强的瞬间过电压,造成过电压损坏。
(5)机内功率开关管的过电压吸收电路有损坏,造成不能有效吸收过电压而使IGBT损坏,如图1所示。
(6)滤波电容因日久老化,容量减少或内部电感变大,对母线的过压吸收能力下降,造成母线上过电压太高而损坏IGBT。正常运行时母线上的过电压是逆变开关器件脉冲关断时,母线回路的电感储能转变而来的。
(7)IGBT或IPM功率器件的前级光电隔离器件因击穿导致功率器件也击穿,或因在印制板隔离器件部位有尘埃、潮湿造成打火击穿,导致IGBT、IPM损坏。
(8)不适当的操作,或产品设计软件中有缺陷,在干扰和开机、关机等不稳定情况下引起上下两功率开关器件瞬间同时导通。
(9)雷击、房屋漏水入侵,异物进入、检查人员误碰等意外。
(10)经维修更换了滤波电容器,因该电容质量不好,或接到电容的线比原来长了,使电感量增加,造成母线过电压幅度明显升高。
(11)前级整流桥损坏,由于主电源前级进入了交流电,造成IGBT、IPM损坏。
(12)修理更换功率模块,因没有静电防护措施,在焊接操作时损坏了IGBT。或因修理中散热、紧固、绝缘等处理不好,导致短时使用而损坏。
(13)并联使用IGBT,在更换时没有考虑型号、批号的一致性,导致各并联元件电流不均而损坏。
(14)变频器内部保护电路(过电压、过电流保护)的某元件损坏,失去保护功能。
(15)变频器内部某组电源,特别是IGBT驱动级+、-电源损坏,改变了输出值或两组电源间绝缘被击穿。
1.1.3
更换
只有查到损坏的根本原因,并首先消除再次损坏的可能,才能更换逆变模块,否则换上去的新模块会再损坏。
(1)IGBT
同绝缘栅场效应管一样要避免静电损坏。在装配焊接中防止损坏的根本措施是,把要修理的机器、IGBT
模块、电烙铁、人、操作工作台垫板等全部用导线连接起来,使得在同一电场电位下进行操作,全部连接的公共点如能接地就更好。特别是电烙铁头上不能带有市电高电位,示波器电源要用隔离良好的变压器隔离。IGBT模块在未使用前要保持控制极G
与发射极E
接通,不得随意去掉该器件出厂前的防静电保护G-E
连通措施。
(2)功率模块与散热器之间涂导热硅脂,保证涂层厚度0.1耀0.25
mm,接触面80%以上,紧固力矩按紧固螺钉大小施加(M4
kg·cm,M5
kg·cm,M6
kg·cm),以确保模块散热良好。
(3)机器拆开时,要对被拆件、线头、零件做好笔记。再装配时处理好原装配上的各类技术措施,不得简化、省略。例如,输入的双绞线、各电极连接的电阻阻值、绝缘件、吸收板或吸收电容都要维持原样;要对作了修焊的驱动印制板进行清洁和防止爬电的涂漆处理,以及保证绝缘可靠,更不要少装和错装零部件。
(4)并联模块要求型号、编号一致,在编号无法一致时,要确保被并联的全部模块性能相同。
(5)对因炸机造成铜件的缺损,要把毛刺修圆砂光,避免因过电压发生尖端放电而再次损坏。
1.1.4
更换模块后的通电
经常会更换模块后,一通电又烧毁了。为防止此类事故,一般在变频器的直流主回路里串入一电阻,电阻阻值为1耀2
k赘,功率50
W以上,由于电阻的限流作用,即使故障开机也不会损坏模块。空载时流过电阻的电流小,压降也小,可做空载检查。
一般只要空载运行正常,去掉电阻大都会正常。
1.2
整流桥的损坏
1.2.1
判断
用万用表电阻挡即可判断,对并联的整流桥要松开连接件,找到坏的那一个。
1.2.2
损坏原因查找
(1)器件本身质量不好。
(2)后级电路、逆变功率开关器件损坏,导致整流桥流过短路电流而损坏。
(3)电网电压太高,电网遇雷击和过电压浪涌。电网内阻小,过电压保护的压敏电阻已经烧毁不起作用,导致全部过压加到整流桥上。
(4)变频器与电网的电源变压器太近,中间的线路阻抗很小,变频器没有安装直流电抗器和输入侧交流电抗器,使整流桥处于电容滤波的高幅度尖脉冲电流的冲击状态下,致使整流桥过早损坏。
(5)输入缺相,使整流桥负担加重而损坏。
1.2.3
更换
(1)找到引起整流桥损坏的根本原因,并消除,防止换上新整流桥又发生损坏。
(2)更换新整流桥,对焊接的整流桥需确保焊接可靠。确保与周边元件的电气安全间距,用螺钉联接的要拧紧,防止接触电阻大而发热。与散热器有传导导热的,要求涂好硅脂降低热阻。
(3)对并联整流桥要用同一型号、同一厂家的产品以避免电流不均匀而损坏。
1.3
滤波电解电容器损坏
1.3.1
判断
出现外观炸开、铝壳鼓包、塑料外套管裂开,流出了电解液、保险阀开启或被压出,小型电容器顶部分瓣开裂,接线柱严重锈蚀,盖板变形、脱落,说明电解电容器已损坏。用万用表测量开路或短路,容量明显减小,漏电严重(用万用表测最终稳定后的阻值较小)。
1.3.2
找出电容损坏原因
(1)器件本身质量不好(漏电流大、损耗大、耐压不足、含有氯离子等杂质、结构不好、寿命短)。
(2)滤波前的整流桥损坏,有交流电直接进入了电容。
(3)分压电阻损坏,分压不均造成某电容首先击穿,随后发生相关其他电容也击穿。
(4)电容安装不良,如外包绝缘损坏,外壳连到了不应有的电位上,电气连接处和焊接处不良,造成接触不良发热而损坏。
(5)散热环境不好,使电容温升太高,日久而损坏。
1.3.3
电容的更换
(1)更换滤波电解电容器最好选择与原来相同的型号,在一时不能获得相同的型号时,必须注意以下几点:耐压、漏电流、容量、外形尺寸、极性、安装方式应相同,并选用能承受较大纹波电流,长寿命的品种。
(2)更换拆装过程中注意电气连接(螺钉联接和焊接)牢固可靠,正、负极不得接错,固定用卡箍要能牢固固定,并不得损坏电容器外绝缘包皮,分压电阻照原样接好,并测量一下电阻值,应使分压均匀。
(3)已放置一年以上的电解电容器,应测量漏电流值,不得太大,装上前先行加直流电老化,直流电先加低一些,当漏电流减小时,再升高电压,最后在额定电压时,漏电流值不得超过标准值。
(4)因电容器的尺寸不合适,而修理替换的电容器只能装在其他位置时,必须注意从逆变模块到电容的母线不能比原来的母线长,两根+、-母线包围的面积必须尽量小,最好用双绞线方式。这是因为电容连接母线延长或+、-母线包围面积大会造成母线电感增加,引起功率模块上的脉冲过电压上升,造成损坏功率模块或过电压吸收器件损坏。在不得已的情况下,另将高频高压的浪涌吸收电容器用短线加装到逆变模块上,帮助吸收母线的过电压,弥补因电容器连接母线延长带来的危害。
1.4
风机的损坏
1.4.1
风机的损坏判断
(1)测量风机电源电压是否正常,如风机电源不正常,首先要修好风机电源。
(2)确认风机电源正常后风机如不转或慢转,则风机已损坏,需更换。
1.4.2
损坏原因查找
(1)风机本身质量不好,线包烧毁、局部短路,直至风机的电子线路损坏,或风机引线断路、机械卡死、含油轴承干涸、塑料老化变形卡死。
(2)环境不良,有水汽、结露、腐蚀性气体、脏物堵塞、温度太高使塑料变形。
1.4.3
风机的更换
(1)更换新风机最好选择原型号或比原型号性能优越的风机,同样尺寸的风机包含很多种风量和风压品种。
(2)风机的拆卸有很多情况要牵动变频器内部机芯,在拆卸时要做好记录和标识,防止装回原样时发生错误。有的设计已充分考虑到更换方便性,此时要看清楚,不要盲目大拆、大动。
(3)风机在安装螺钉时,力矩要合适,不要因过紧而使塑料件变形和断裂,也不能太松而因振动松脱。风机的风叶不得碰风罩,更不得装反风机。
(4)选用风机时注意风机轴承是滚珠轴承的为好,含油轴承的机械寿命短。就单纯轴承寿命而言,使用滚珠轴承时风机寿命会高5耀10
倍。
(5)风机装在出风口承受高温气流,其风叶应用金属或耐温塑料制成,不得使用劣质塑料,以免变形。
(6)电源连接要正确良好,转子风叶不得与导线相摩擦,装好后要通电试一下。
(7)清理风道和散热片的堵塞物很重要,不少变频器因风道堵塞而发生过热保护或损坏。
1.5
开关电源的损坏
1.5.1
开关电源损坏的判断
(1)有输入电压,而无开关电源输出电压,或输出电压明显不对。
(2)开关电源的开关管、变压器印制板周边元件,特别是过电压吸收元件有外观上可见的烧黄、烧焦,用万用表测开关管等元件已损坏。
(3)开关变压器漆包线长期在高温下使用,出现发黄、焦臭、变压器绕阻间有击穿、变压器绕阻特别是高压线包有断线、骨架有变形和跳弧痕迹。
1.5.2
查找开关电源损坏原因
(1)开关电源变压器本身漏感太大。运行时一次绕阻的漏感造成大能量的过电压,该能量被吸收的元件(阻容元件、稳压管、瞬时电压抑制二极管)吸收时发生严重过载,时间一长吸收的元件就损坏了。
以上原因又会使开关电源效率下降、开关管和开关变压器发热严重,而且开关管上出现高的反峰电压,促使开关管损坏及变压器损坏,特别在密闭机箱里的变压器、开关管、吸收用电阻、稳压管或瞬时电压抑制二极管的温度会很高。
(2)变压器导线因氧化、助焊剂腐蚀而断裂。
(3)元器件本身寿命问题,特别是开关管和或开关集成电路因电流电压负担大,更易损坏。
(4)环境恶劣,由灰尘、水汽等造成绝缘损坏。
1.5.3
开关电源的修理
(1)开关电源因局部高温已使印制板深度发黄碳化或印制线损坏时,印制板的绝缘和覆铜箔、导线已不能使用时,只能整体更换该印制板。
(2)查出损坏的元件后更换新元件,元件型号应与原型号一致,在不能一致时,要确认元件的功率、开关频率、耐压以及尺寸上能否安装,并要与周边元件保持绝缘间距。
(3)认为已修好后,应通电检查。通电时不应使整个变频器通电而只对有开关变压器的那一部分,即在开关变压器的电源侧通电,检查工作是否正常、二次电压是否正确,改变电源侧的电压在+15%耀-20豫变动范围内,输出电压应基本不变。
1.6
接触器的损坏
1.6.1
接触器损坏判断
(1)对于发生逆变桥模块炸毁、滤波电解电容器发生爆炸等变频器后级发生严重过电流短路的,都要检查是否影响了接触器。常见的损坏有触头烧蚀、烧结,以及接触器塑料件烧变形。
(2)少数接触器会发生控制线包断线和完全不动作。
·
1.6.2
损坏原因
(1)后级有短路,过电流故障造成触头烧蚀。
(2)线包质量不好,发生线包烧毁、烧断线而不能吸合。
(3)对有电子线路的接触器,会因电子线路损坏而不能动作,因此最好不用此类接触器。
(4)因炸机火焰损坏。
1.6.3
更换
(1)选同型号、同尺寸、线包电压相同的产品更换,如型号不同,则性能、尺寸、电压应相同。
(2)如果有旧的接触器,可以更换内部零件而修好,但必须严格按原有内部装配正确装配好。
(3)对烧蚀不严重的触头,可以用细砂布仔细砂光继续使用。
(4)因触头要流过大电流,对螺钉联接的铜条和导线必须切切实实拧紧以减少发热。
1.7
印制电路板的损坏
1.7.1
印制电路板的损坏判断
(1)排除了主回路器件的故障后,如还不能使变频器正常工作,最为简单有效的判断是拆下印制板看一下正、反面有无明显的元件变色、印制线变色、局部烧毁。
(2)一般变频器上的印制板主要有驱动板、主控板、显示板,根据变频器故障表现特征,使用换板方式判断哪块板有毛病。对其他印制板,如吸收板、GE
板、风机电源板等,因电路简单可用万用表迅速查出故障。
(3)印制板在有电路图时按图检查各电源电压,用示波器检查各点波形,先从后级,逐渐往前级检查;在没有电路图时,采用比较法,对有几路相同的部分进行比较,将故障板与好板对照查出不同点,再作分析即可找到损坏的器件。
1.7.2
印制板损坏原因
(1)元器件本身质量和寿命造成损坏,特别是功率较大的器件,损坏的概率更大。
(2)元器件因过热或过电压损坏,变压器断线,电解电容器干枯、漏电,电阻长期高温而变值。
(3)因环境温度、湿度、水露、灰尘引起印制板腐蚀击穿绝缘漏电等损坏。
(4)因模块损坏导致驱动印制板上的元件和印制线损坏。
(5)因接插件接触不良、单片机、存储器受干扰晶振失效。
(6)原有程序因用户自行调乱,不能工作。
1.7.3
印制板的维修
(1)对印制板维修需有电路图、电源、万用表、示波器、全套焊接拆装工具,以及日积月累的经验,才会比较迅速地找到损坏之处。
(2)印制板表面有防护漆等涂层,检测时要仔细用针状测笔接触到被测金属,防止误判。由于元件过热和过电压容易造成元件损坏,所以对于下列部位要求高度注意,首先检查;
开关电源的开关管、开关变压器、过电压吸收元件、功率器件、脉冲变压器、高压隔离用的光耦合器、过电压吸收或缓冲吸收板及所属元件、充电电阻、场效应管或IGBT管、稳压管或稳压集成电路。
(3)印制板的更换会因版本不同而带来麻烦,因此若确定要换板,就要看版号标识是否一致,如不一致而发生了障碍,就要向制造商了解清楚。
(4)单片机编号不一样内部的程序就不一样,在使用中某些项目可能会表现不一样,因此,使用中如确认程序有问题,就应向制造商询问。
(5)由于干扰会导致变频器工作不正常或发生保护。此时,应采取抗干扰措施,除了变频器整体上考虑抗干扰外(如加装输入/输出交流电抗器、无线电干扰抑制电抗器,输出线加磁环等),还可以在印制板的电源端加装由磁环和同相串绕的几匝导线构成的所谓共模抑制电抗器,对印制板上下位置作静电隔离屏蔽,以及对外部控制线用屏蔽线或用双绞线等措施。
(6)印制板维修后要通电检查,此时不要直接给变频器的主回路通电,而要使用辅助电源对印制板加电,并用万用表检查各电压,用示波器观察波形,确认完全无误后才可接到主回路一起调试。
1.8
变频器内部打火或燃烧
1.8.1
过电压吸收不良造成打火
变频器的逆变器在快速切换电流时,发现某主器件被损坏,一般是由于切换电路上往往有电感存在,电感上储存的磁场能量将迅速转变为电场能量,即
特别当被切换电流i
大,而电路分布电容C小的时刻,在电流切换器的端子上将出现极高的过电压u,这个电压有时高到几百伏、几千伏、甚至几万伏。
因此,在变频器的功率开关器件(如IGBT)的C、E端、开关电源管的D端、电源进线端等部位都设置了过电压吸收电路或器件来作保护。但这些保护器件失效,或具有相同作用的其他器件性能变坏(如承担部分过电压吸收的滤波电容干枯)时,都有可能出现过电压,发生打火、击穿或被保护的开关器件自身损坏。
常见过电压吸收电路如图2
所示。电源进线端的过电压吸收电路如图3
所示。
当这些吸收元件损坏及安装它的印制板损坏时,就会产生过电压、跳火、烧蚀及主器件立即损坏。
更换这些元件时要求意识到型号的重要性,如二极管一定要用快恢复或超快恢复二极管,连接的接线要简短,以减少分布电感量的危害。
1.8.2
主器件损坏造成打火
有些变频器损坏的现象使人感到纳闷,母线间的某个间距并不小,但有尖端放电可能的区域,出现打火电蚀的痕迹。仔细检查发现有某主器件被损坏,究竟是不是间距不够造成的后果呢?不是的,这是因主回路有一定的电感,当主器件因故障的短路大电流突然烧毁时,就会造成母线间过电压(见图4)。逆变桥开关器件IGBT短路会造成正负母线间打火;整流桥短路或逆变IGBT
短路有可能造成进线处打火或进线保护用压敏电阻损坏,因进线也有电感,也会造成过电压。
逆变桥开关器件IGBT
或整流桥烧毁造成自身炸裂,严重时殃及周围器件,如烧毁驱动电路板。
·
1.8.3
压敏电阻问题
压敏电阻本来是用于进线侧吸收进线过电压的保护器件,但当进线侧电压持续较高,压敏电阻性能有变化时,有可能使压敏电阻爆炸烧毁,同样有可能殃及周围器件和导线绝缘。
1.8.4
电解电容器漏液、爆炸、燃烧
电解电容质量不好的表现有:漏液、漏电流大、损耗大、发热、鼓包、炸裂、由炸裂引起燃烧、容量下降,内阻及电感增加。对于滤波用电解电容器因电压高、容量大,所储存的能量大,容易造成漏液、爆炸、燃烧。电解液是可燃物,可造成燃烧事故。因此要用质量好的电解电容器,并在到达寿命前更换新的。
1.9
常见运行中的故障
1.9.1
过电流跳闸
起动时,一升速就跳闸,说明过电流十分严重,应查看有否负载短路、接地、工作机械卡堵、传动损坏、电动机起动转矩过小、以及根本起不动、变频器逆变桥已损坏。
运行中跳闸引起的原因有升速设定时间过短、降速时间设定过短、转矩补偿(V/f
比)设定太大,造成低速过电流、热继电器调整不当,动作电流设定太小也可引起过电流动作。
1.9.2
过电压和欠电压跳闸
(1)过电压:电源电压过高、降速时间设定过短、降速过程中制动单元没有工作或制动单元放电太慢,即制动电阻太大。变频器内部过电压保护电路有故障会引起过电压。
(2)欠电压:电源电压过低、电源缺相、整流桥有一相故障,变频器内部欠电压保护电路故障也会引起欠电压。
1.9.3
电动机不转
电动机、导线、变频器有损坏,线未接好,功能设置,如上限频率、下限频率、最高频率设定时没有注意,相互矛盾着。使用外控给定时,没有选项预置,以及其他不合理设置。
1.9.4
发生失速
变频器在减速或停止过程中,由于设置的减速时间过短或制动能力不够,导致变频器内部母线电压升高发生保护(也称过电压失速),造成变频器失去对电动机的速度控制。此时,应设置较长的减速时间,保持变压器内母线电压不至于升得太高,实现正常减速控制。
变频器在增速过程中,设置的加速时间过短或负载太重,电网电压太低,导致变频器过电流而发生保护(也称过电流失速),变频器失去对电动机的速度控制。此时,应设置较长的增速时间,维持不会过电流,实现正常增速控制。
1.9.5
变频器主器件自保护(FL保护)
该保护是变频器主器件工作不正常而发生的自我保护,很多原因都会导致FL保护。FL发生时,很多是变频器逆变器部分已经流过了不适当的大电流。这一电流在很短的时间内被检测出来,并在没有使功率器件损坏前发出保护控制信号,停止功率器件继续被驱动板激励而继续发生大电流,从而保护了功率器件。也有功率器件已坏,不适当地通过了大电流,被检测后就停止了驱动板对功率器件的激励。也有因过热使热敏元件动作,发生FL保护。
FL发生的现象一般有:一通电就FL保护、运行一段时间发生FL保护、不定期出现EL保护。
FL发生时要检查以下是否已损坏及作出处理。
(1)模块(开关功率器件)已损坏。
(2)驱动集成电路(驱动片)、驱动光耦合器已损坏。
(3)由功率开关器件IGBT集电极到驱动光耦合器的传递电压信号的高速二极管损坏。
(4)因逆变模块过热造成热断电器动作。这类故障一般冷却后可复位,即FL在冷却时不发生,可再运行。对此要改善冷却通风,找到加热根源。
(5)外部干扰和内部干扰造成变频器控制部位、芯片发生误动作。对此要采取内部抗干扰措施,如加磁环、屏蔽线,更改外部布线、对干扰源隔离、加电抗器等。
1.10
康沃变频器常见故障及处理方法
1.10.1
故障P.OFF
康沃变频器上电显示P.OFF,延时1耀2
s后显示0,表示变频器处于待机状态。在应用中若出现变频器上电后一直显示P.OFF
而不跳0
现象,主要原因有输入电压过低、输入电源缺相及变频器电压检测电路故障。处理时应先测量电源三相输入电压,R、S、T端子正常电压为三相380
V,如果输入电压低于320
V或输入电源缺少,则应排除外部电源故障。如果输入电源正常可判断为变频器内部电压检测电路或缺相保护故障。对于康沃G1/P1
系列90
kW及以上机型变频器,故障原因主要为内部缺相检测电路异常。缺相检测电路由两个单相380
V/18.5
V变压器及整流电路构成,故障原因大多为检测变压器故障,处理时可测量变压器的输出电压是否正常。
1.10.2
故障ER08
康沃变频器出现ER08
故障代码表示变频器处于欠电压故障状态。主要原因有输入电源过低或缺相、变频器内部电压检测电路异常、变频器主电路异常。通用变频器电压输入范围在320~460
V。
在实际应用中变频器满载运行时,当输入电压低于340
V时可能会出现欠电压保护,这时应提高电网输入电压或变频器降额使用;若输入电压正常,变频器在运行中出现ER08
故障,则可判断为变频器内部故障。若变频器主回路正常,出现ER08
报警的原因大多为电压检测电路故障。一般变频器的电压检测电路为开关电源的一组输出,经过取样、比较电路后给CPU
处理器,当超过设定值时,CPU根据比较信号输出故障封锁信号,封锁IGBT,同时显示故障代码。
1.10.3
故障ER02/ER05
故障代码ER02/ER05
表示变频器在减速中出现过电流或过电压故障,主要原因为减速时间过短、负载回馈能量过大未能及时被释放。若电动机驱动惯性较大的负载时,当变频器频率(即电动机的同步转速)下降时,电动机的实际转速可能大于同步转速,这时电动机处于发电状态,此部分能量将通过变频器的逆变电路返回到直流回路,从而使变频器出现过压或过流保护。现场处理时在不影响生产工艺的情况下可延长变频器的减速时间,若负载惯性较大,又要求在一定时间内停机时,则要加装外部制动电阻和制动单元,康沃G2/P2
系列变频器22
kW
以下的机型均内置制动单元,只需加外部制动电阻即可,电阻选配可根据产品说明中标准选用;对于功率22
kW以上的机型则要求外加制动单元和制动电阻。
ER02/ER05故障一般只在变频器减速停机过程中才会出现,如果变频器在其他运行状态下出现该故障,则可能是变频器内部的开关电源部分,如电压检测电路或电流检测电路异常而引起的。
1.10.4
故障ER17
代码ER17
表示电流检测故障。通用变频器电流检测一般采用电流传感器,如图5
所示,通过检测变频器两相输出电流来实现变频器运行电流的检测、显示及保护功能。输出电流经电流传感器(图中的H1、H2)输出线性电压信号,经放大比较电路输送给CPU
处理器,CPU
处理器根据不同信号判断变频器是否处于过电流状态,如果输出电流超过保护值,则故障封锁保护电路动作,封锁IGBT脉冲信号,实现保护功能。
康沃变频器出现ER17
故障的主要原因为电流传感器故障或电流检测放大比较电路异常,前者可通过更换传感器解决,后者大多为相关电流检测IC
电路或IC
芯片工作电源异常,可通过更换相关IC或维修相关电源解决。
1.10.5
故障ER15
代码ER15
表示逆变模块IPM、IGBT故障,主要原因为输出对地短路、变频器至电动机的电缆线过长(超过50
m)、逆变模块或其保护电路故障。现场处理时先拆去电动机接线,测量变频器逆变模块,观察输出是否存在短路,同时检查电动机是否对地短路及电动机接线是否超过允许范围,如上述均正常,则可能为变频器内部IGBT
模块驱动或保护电路异常。一般IGBT过电流保护是通过检测IGBT导通时的管压降动作的,如图6所示。
当IGBT正常导通时其饱和压降很低,当IGBT过电流时管压降VCE会随着短路电流的增加而增大,增大到一定值时,检测二极管VDB将反向导通,此时反向电流信号经IGBT驱动保护电路送给CPU
处理器,CPU
封锁IGBT
输出,以达到保护作用。如果检测二极管VDB损坏,则康沃变频器会出现ER15
故障,现场处理时可更换检测二极管以排除故障。
1.10.6
故障ER11
康沃变频器出现ER11
故障表示变频器过热,可能的原因主要有:风道阻塞、环境温度过高、散热风扇损坏不转及温度检测电路异常。现场处理时先判断变频器是否确实存在温度过高情况,如果温度过高可先按以上原因排除故障;若变频器温度正常情况下出现ER11
报警,则故障原因为温度检测电路故障。康沃22
kW以下机型采用的七单元逆变模块,内部集成有温度元件,如果模块内此部分电路也会出现ER11
报警,另处当温度检测运算电路异常时也会出现同样故障现象。
2 变频器驱动电路常见问题及解决方案
近10
多年来,随着电力电子技术、微电子技术及现代控制理论向交流电气传动领域的渗入,变频交流调速已逐渐取代了过去的转差率调速、变极调速、直流调速等调速技术。几乎可以说,有交流电动机的地方就有变频器的使用。其最主要的特点是具有高效率的驱动性能及良好的控制特性。
现在通用型的变频器一般包括以下几个部分:整流桥、逆变桥、中间直流电路、预充电电路、控制电路、驱动电路等。一台变频器的好坏,驱动电路起着至关重要的作用,现就来谈谈驱动电路常见的问题以及解决的办法。
随着技术的不断发展,驱动电路本身也经历了从插脚式元件的驱动电路到光耦驱动电路,再到厚膜驱动电路,以及比较新的集成驱动电路。目前后三种驱动电路在维修中还是经常能遇到的。
下面介绍几种驱动电路的维修方法。
2.1
驱动电路损坏的原因及检查
造成驱动损坏的原因是各种各样的,一般来说,出现的问题也无非是U、V、W三相无输出或输出不平衡,或输出平衡但是在低频时抖动,还有启动报警等。当一台变频器大电容后的快速熔断器断开,或者是IGBT
逆变模块损坏的情况下,驱动电路基本都不可能完好无损,切不可换上好的快速熔断器或IGBT逆变模块,这样很容易造成刚换上的新器件再次损坏。这时应该着重检查驱动电路上是否有打火的印记。可以先将IGBT逆变模块的驱动脚连线拔掉,用万用表电阻挡测量六路驱动是否阻值都相同(但是极个别的变频器驱动电路不是六路阻值都相同的,如三菱、富士等变频器)。如果六路阻值都基本相同也不能完全证明驱动电路是完好的,接着需要使用电子示波器测量六路驱动电路上电压是否相同,当给定一个起动信号时六路驱动电路的波形是否一致。如果没有电子示波器,也可以尝试使用数字式电子万用表来测量驱动电路六路的直流电压。一般来说,未起动时的每路驱动电路上的直流电压约为10
V,起动后的直流电压为2耀3
V,如果测量结果一切正常的话,基本可以判断此变频器的驱动电路是好的。接着就将IGBT逆变模块连接到驱动电路上,但是记住在没有100%把握的情况下,最稳妥的方法还是将IGBT逆变模块的P从直流母线上断开,中间串联一组灯泡或一个功率大一点的电阻,这样能在电路出现大电流的情况下,保护IGBT逆变模块不被大电容的放电电流烧坏。下面介绍几个在维修变频器时和驱动电路有关的实例。
2.2
安川616G5,3.7
kW的变频器
安川616G5,3.7
kW的变频器,故障现象为三相输出正常,但在低速时电动机抖动,无法进行正常运行。首先估计多数为变频器驱动电路损坏,正确的解决办法应该是确定故障现象后将变频器打开,将IGBT
逆变模块从印制电路上卸下,使用电子示波器观察六路驱动电路打开时的波形是否一致,找出不一致的那一路驱动电路,更换该驱动电路上的光耦合器,一般为PC923
或PC怨圆怨。若变频器使用年数超过3
年,推荐将驱动电路的电解电容器全部更换,然后再用示波器观察,待六路波形一致后,装上IGBT逆变模块,进行负载实验,抖动现象消除。
2.3
富士G9变频器
富士G9变频器,故障现象为上电无显示。估计可能是变频器开关电源损坏,打开变频器检查开关电源线路,但是经检查,开关电源器件线路都无损坏,直流电压也无显示,这时要估计到可能是驱动问题。将驱动电路的所有电容拆下,发现有个别电容漏液,更换新的电解电容器,再次上电后正常工作。
2.4
台达变频器
台达变频器,故障现象是变频器输出端打火,拆开检查后发现IGBT逆变模块击穿,驱动电路印制电路板严重损坏。正确的解决办法是先将损坏IGBT逆变模块拆下,拆的时候主要应尽量保护好印制电路板不受人为二次损坏,将驱动电路上损坏的电子元器件逐一更换,将印制电路板上开路的线路用导线连起来(这里要注意要将烧毁的部分刮干净,以防再次打火)。在六路驱动电路阻值相同、电压相同的情况下使用示波器测量波形,但变频器一开就报OCC
故障(台达变频器无IGBT逆变模块,开机会报警)使用灯泡将模块的P1
和印制板连起来,其他的用导线连,再次起动还报OCC,确定为驱动电路还有问题;逐一更换光耦合器,后发现该驱动电路的光耦合器带检测功能,其中一路光耦合器检测功能损坏,更换新的后,起动正常。
第三篇:变频器常见故障处理和维修方法经典教案
变频器常见故障处理和维修方法经典教案
本文主要介绍了变频器的一些常见故障处理和维修方法,并简述了其故障产生的原因及防治对策。
1、引言
随着科学技术水平的不断提高,新型大功率电力电子元器件的诞生,集成电路和微机技术的应用,交流变频调速技术已日趋完善和成熟。交流变频调速系统以调速范围宽、动态响应快、调速精度高、保护功能完善和操作简单等优点,已在冶金、石化、电力、机械、民用电器等行业得到广泛应用。变频器在正常使用6-10年后,就进入故障的高发期,经常会出现元器件烧坏、失效、保护功能频繁动作等故障现象,严重影响其正常运行。在长期从事设备维修工作中,本人遇到过许多不同的变频器故障,在对其处理过程中,发现其故障类别有一定的共性和规律。在实际维修中,只要抓住其特征,掌握故障处理的规律,就能做好变频器的维修工作,使变频器在实际中出现的各种故障得到及时处理和解决,并延长其使用寿命。首先,要根据变频器的使用技术规范要求,制定完善的日常维护措施和检修周期,使故障隐患在初期得到解决,尤其是在恶劣环境条件下使用的变频器,这项措施更为重要。其次,专业维修人员必须全面了解其原理、结构和控制方式等常识。此外,还要有丰富的实践维修经验和扎实的电气理论知识。
2、变频器应用现状
在实际设备维修中,遇到最多的是进口变频器。如富士、三星、ABB、AB、西门子等厂家。特别是在大、中型企业旧设备技术改造中,应用最为广泛。其原因是由于十多年前国内生产变频器的厂家很少,其产品功能简单、性能低、质量不高。而进口变频器机型多、技术成熟、功能齐全、性能优越、质量高、耐用的特点,并且适合不同设备拖动需求,故占据着国内变频器市场的主要部分。在多年的实际使用中,发现进口变频器也存在着一个很大的问题,就是国内多数代理商和经销商在推销进口变频器时,一般是以国外已开始淘汰的机型为主,由于这类产品的价格不高,国内企业普遍能够接受。另外,国企在设备技术改造中,因改造资金不足、对方案设计不重视、审批专业性不强等其它原因,会自然选择这种机型。故设备技术改造完成2-3年后,就出现变频器维修配件或整机购买不到现象。代理商以这种产品淘汰,又推销另外一种机型,结果出现了同一个设备改造项目,却采用多种机型控制的情况。如我厂炭素一、二期焙烧4台多功能天车变频器改造,分别采用AB公司AC800-01、AC800-02两种变频器(2台是2002年实施的改造;另2台是2003年完成的)。又如我厂炭素净化系统4台200kW的排烟机2001年选用ABB公司ASC600(250kW)机型实施变频器改造后,运行3年多,就有2台变频器因无备件停用(因这种机型淘汰,已不生产,无备件供应)。随着经济和技术的迅速发展和进步,近几年国内众多厂家在变频器研制和开发方面,已开始了大规模资金和人力的投入。目前国产变频器在控制技术和功能上,已取得了显著的进步和成就。但由于过去的遗留的旧观念和态度,人们在实际应用中,仍然对国产变频器的性能和质量有较深的怀疑和偏见,故目前制约着国产变频器推广和应用。但国产变频器以其低价格,维修方便、配件供应及时等优点,正在逐渐被国内企业技术人员认可和接纳。
3、变频器的常见故障及维修对策
目前,大多数国内企业中,由于维修人员素质、能力、实践经验及设备管理不到位等原因,在设备维修工作上,主要采取设备元部件整体更换的维修工作方式。对于设备中变频器维修,也普遍采取整机报废、更换(或更新)维修方式。故企业内废旧整机变频器数量很多,每年要花费大量资金购置新的变频器,以维持实际设备运行需要。另外,由于变频器在使用中故障频繁,从维修人员到管理层普遍认为只有进口机型,才有高质量、低故障的保障。对变频器使用环境、维护不重视,将各类异常故障归结于质量问题,故出现了设备完成变频器
技术改造的几年后,又提出了新的设备变频器技改项目(这种技改其实是变频器更新工作),使一台设备多次实施技改,浪费了大量资金,影响着企业生产成本降低和效益的提高。
3.1 变频器故障分类
根据变频器发生故障或损坏的特征,一般可分为两类; 一种是在运行中频繁出现的自动停机现象,并伴随着一定的故障显示代码,其处理措施可根据随机说明书上提供的指导方法,进行处理和解决。这类故障一般是由于变频器运行参数设定不合适,或外部工况、条件不满足变频器使用要求所产生的一种保护动作现象; 另一类是由于使用环境恶劣,高温、导电粉尘引起的短路、潮湿引起的绝缘降低或击穿等突发故障(严重时,会出现打火、爆炸等异常现象)。这类故障发生后,一般会使变频器无任何显示,其处理方法是先对变频器解体检查,重点查找损坏件,根据故障发生区,进行清理、测量、更换,然后全面测试,再恢复系统,空载试运行,观察触发回路输出侧的波形,当6组波形大小、相位差相等后,再加载运行,达到解决故障的目的。本文主要阐述第二类故障的分析和处理方法。广州科沃—工控维修的120
www.xiexiebang.com 主电路故障
根据对变频器实际故障发生次数和停机时间统计,主电路的故障率占60%以上;运行参数设定不当,导致的故障占20%左右;控制电路板出现的故障占15%;操作失误和外部异常引起的故障占5%。从故障程度和处理困难性统计,此类故障发生必然造成元器件的损坏和报废。是变频器维修费用的主要消耗部分。
(1)整流块的损坏 变频器整流桥的损坏也是变频器的常见故障之一,早期生产的变频器整流块均以二极管整流为主,目前部分整流块采用晶闸管的整流方式(调压调频型变频器)。中、大功率普通变频器整流模块一般为三相全波整流,承担着变频器所有输出电能的整流,易过热,也易击穿,其损坏后一般会出现变频器不能送电、保险熔断等现象,三相输入或输出端呈低阻值(正常时其阻值达到兆欧以上)或短路。在更换整流块时,要求其在与散热片接触面上均匀地涂上一层传热性能良好的硅导热膏,再紧固螺丝。如果没有同型号整流块时,可用同容量的其它类型的整流块替代,其固定螺丝孔,必须重新钻孔、攻丝,再安装、接线。例如,一台80年代中期西门子生产的变频器(7.5kVA)整流模块(椭圆形)击穿后,因无同类整流块配件,采用三垦生产的同容量整流块(矩形)替代后,已运行多年,目前仍然能正常使用。
(2)充电电阻易损坏 导致变频器充电电阻损坏原因一般是:如主回路接触器吸合不好时,造成通流时间过长而烧坏;或充电电流太大而烧坏电阻;或由于重载启动时,主回路通电和RUN信号同时接通,使充电电阻既要通过充电电流,同时又要通过负载逆变电流,故易被烧坏。其损坏的特征,一般表现为烧毁、外壳变黑、炸裂等损坏痕迹。也可根据万用表测量其电阻(不同容量的机器,其阻值不同,可参考同一种机型的阻值大小确定)判断。
(3)逆变器模块烧坏
中、小型变频器一般用三组IGTR(大功率晶体管模块);大容量的机种均采用多组IGTR并联,故测量检查时应分别逐一进行检测。IGTR的损坏也可引起变频器OC(+pA或+pd或+pn)保护功能动作。逆变器模块的损坏原因很多:如输出负载发生短路;负载过大,大电流持续运行;负载波动很大,导致浪涌电流过大;冷却风扇效果差;致使模块温度过高,导致模块烧坏、性能变差、参数变化等问题,引起逆变器输出异常。
如一台FRN22G11S-4CX变频器,输出电压三相差为106V,解体在线检查逆变模块(6MBP100RS-120)外观,没发现异常,测量6路驱动电路也没发现故障,将逆变模块拆下测量发现有一组模块不能正常导通,该模块参数变化很大(与其它两组比较),更换之后,通电运行正常。又如MF-30K-380变频器在启动时出现直流回路过压跳闸故障。这台变频器
并不是每次启动时,都会过压跳闸。检查时发现变频器在通电(控制面板上无通电显示信号)后,测得直流回路电压达到500V以上,由于该型变频器直流回路的正极串接1只SK-25接触器。在有合闸信号时经过预充电过程后吸合,故怀疑预充电回路性能不良,断开预充电回路,情况依旧。用电容表检查滤波电容发现已失效,更换电容后,变频器工作正常。
辅助控制电路故障
变频器驱动电路、保护信号检测及处理电路、脉冲发生及信号处理电路等控制电路称为辅助电路。辅助电路发生故障后,其故障原因较为复杂,除固化程序丢失或集成块损坏(这类故障处理方法一般只能采用控制板整块更换或集成块更换)外,其他故障较易判断和处理。(1)驱动电路故障
广州科沃—电梯维修的120
www.xiexiebang.com 驱动电路用于驱动逆变器IGTR,也易发生故障。一般有明显的损坏痕迹,诸如器件(电容、电阻、三极管及印刷板等)爆裂、变色、断线等异常现象,但不会出现驱动电路全部损坏情况。处理方法一般是按照原理图,每组驱动电路逐级逆向检查、测量、替代、比较等方法;或与另一块正品(新的)驱动板对照检查、逐级寻找故障点。处理故障步骤:首先对整块电路板清灰除污。如发现印刷电路断线,则补线处理;查出损坏器件即更换;根据笔者实践经验分析,对怀疑的元器件,进行测量、对比、替代等方法判断,有的器件需要离线测定。驱动电路修复后,还要应用示波器观察各组驱动电路信号的输出波形,如果三相脉冲大小、相位不相等,则驱动电路仍然有异常处(更换的元器件参数不匹配,也会引起这类现象),应重复检查、处理。大功率晶体管工作的驱动电路的损坏也是导致过流保护功能动作的原因之一。驱动电路损坏表现出来最常见的现象是缺相,或三相输出电压不相等,三相电流不平衡等特征。
(2)开关电源损坏 开关电源损坏的一个比较明显的特征就是变频器通电后无显示。如:富士G5S变频器采用了两级开关电源,其原理是主直流回路的直流电压由500V以上降为300V左右,然后再经过一级开关降压,电源输出5V,24V等多路电源。开关电源的损坏常见的有开关管击穿,脉冲变压器烧坏,以及次级输出整流二极管损坏,滤波电容使用时间过长,导致电容特性变化(容量降低或漏电电流较大),稳压能力下降,也容易引起开关电源的损坏。富士G9S则使用了一片开关电源专用的波形发生芯片,由于受到主回路高电压的窜入,经常会导致此芯片的损坏,由于此芯片市场很少能买到,引起的损坏较难修复。另外,变频器通电后无显示,也是较常见的故障现象之一,引起这类故障原因,多数也是由于开关电源的损坏所致。如MF系列变频器的开关电源采用的是较常见的反激式开关电源控制方式,开关电源的输出级电路发生短路也会引起开关电源损坏,从而导致变频器无显示。
(3)反馈、检测电路故障 在使用变频器过程中,经常会碰到变频器无输出现象。驱动电路损坏、逆变模块损坏都有可能引起变频器无输出,此外输出反馈电路出现故障也能引起此类故障现象。有时在实际中遇到变频器有输出频率,没有输出电压(实际输出电压非常小,可认为无输出),这时则应考虑一下是否是反馈电路出现了故障所致。在反馈电路中用于降压的反馈电阻是较容易出现故障的元件之一;检测电路的损坏也是导致变频器显示OC(+pA或+pd或+pn)保护功能动作的原因,检测电流的霍尔传感器由于受温度,湿度等环境因素的影响,工作点容易发生飘移,导致OC报警。
总之,变频器常见故障有过流、过压、欠压以及过热保护,并有相应的故障代码,不同的机型有不同的代码,其代码含义可查阅随机使用说明书,参考处理措施进行解决。过流经常是由于GTR(或IGBT)功率模块的损坏而导致的,在更换功率模块的同时,应先检查驱动电路的工作状态,以免由于驱动电路的损坏,导致GTR(或IGBT)功率模块的重复损坏;欠压故障发生的主要原因是快速熔断器或整流模块的损坏,以及电压检测电路的损坏,电压检测采样信号是从主直流回路直接取样,经高阻值电阻降压,并通过光耦隔离后送到CPU
处理,由高低电平判断是欠压还是过压;过热停机,多数原因是由冷却风扇散热不足引起的。如我厂铝电解车间环境恶劣,高粉尘、高温(夏季厂房上部气温高达56℃)、高氧化铝粉尘、氟化氢腐蚀气体使多功能天车上变频器内电路板易积尘、风扇粘死、电子器件老化迅速、GTR(或IGBT模块过热烧坏,故经常出现过热保护,特别是在夏季,这种现象更加频繁,而且模块烧坏率很高,即使进口机型(如Siemens、senken、fuji等)情况也是如此。为解决这个问题,我们通过加大天车上使用变频器容量,才初步降低了变频器的故障率和报废率,但效果并不理想。
4、降低变频器故障和延长使用寿命的措施 根据实验证明,变频器的使用环境温度每升高10℃,则其使用寿命减少一半。为此在日常使用中,应根据变频器的实际使用环境状况和负载特点,制定出合理的检修周期和制度,在每个使用周期后,将变频器整体解体、检查、测量等全面维护一次,使故障隐患在初期被发现和处理。
4.1 作好检修工作
(1)定期(根据实际环境确定其周期间隔长短)对变频器进行全面检查维护,必要时可将整流模块、逆变模块和控制柜内的线路板进行解体、检查、测量、除尘和紧固。由于变频器下进风口、上出风口常会因积尘或因积尘过多而堵塞,其本身散热量高,要求通风量大,故运行一定时间后,其电路板上(因静电作用)有积尘,须清洁和检查。
(2)对线路板、母排等维修后,要进行必要的防腐处理,涂刷绝缘漆,对已出现局部放电、拉弧的母排须取除其毛刺,并进行绝缘处理。对已绝缘击穿的绝缘柱,须清除炭化或更换。
(3)对所有接线端检查、紧固,防止松动引起严重发热现象的发生。
(4)对输入(包括输出)端、整流模块、逆变模块、直流电容和快熔等器件进行全面检查、参数测定,发现烧毁或参数变化大的器件应及时更换。
(5)对变频器内风扇转动状况、要经常仔细检查,断电后,用手转动风叶,观察轴承有无卡死或转动不灵活现象,必要时更换处理。
(6)仔细检查控制电路板上电子元器件,检查和处理脱焊、变色、鼓肚、开裂、断线(印刷板线路)等异常现象,必要时对外表异常的元器件,可从电路板上脱焊测量检查或更换。
(7)由于变频器在设计时其电子元器件考虑了使用老化引起的容量降低问题,故在维修中,不必对容量降低小的电容立即更换。在实际中,电容容量降低高低与变频器使用环境、负载大小、工作制等状况有直接的关系,恶劣环境、负载越大、停启频繁等运行状况,会加速直流主电容老化。另外,定期维护时,要详细检查主直流回路电容器有无漏液、外壳有无膨胀、鼓泡或变形,安全阀是否冲开,并对电容容量、漏电流(漏电流大,会使电容器过热,引起安全阀冲开,甚至电容爆炸)、耐压等进行测试,对容量降低30%以上、漏电流超过70mA、耐压低于650V的电容应及时更换。对新电容或长期闲置未使用的电容,应进行性能测试,满足使用要求后才可替换使用。
(8)对整流块、逆变GTR(或IGBT)等大载流量的器件要用万用表、电桥等仪器、工具进行检测和耐压实验,测定其正向、反向电阻值,并做表格记录,对参数相差较大的模块要更换。
(9)对主接触器及其它辅助继电器进行检查,仔细观察各接触器动静触头有无拉弧、毛刺或表面氧化、凹凸不平,发现此类问题应对其相应的动静触头进行更换,确保其接触安全可靠。
(10)经常检查电源电压波动程度。改善变频器使用环境和负载波动大的现象,避免大电流对变频器冲击的影响。
5、结束语
在变频器的应用中,只有满足其设计工作要求和正常使用的各项条件,才能使其长期、安全、稳定的运行。如果是在恶劣的工作环境下使用,就要加倍重视变频器的日常维护和检修工作,改善变频器使用环境和负载波动大的现象。才能保证变频器可靠、平稳、安全地发挥其各项性能,达到调速运行、节约电能和降低维修费用的目的。
第四篇:变频器故障分析与处理
变频器故障分析与处理
目前人们所说的交流调速系统,主要指电子式电力变换器对交流电动机的变频调速系统。变频调速系统以其优越于直流传动的特点,在很多场合中都被作为首选的传动方案,现代变频调速基本都采用16位或32位单片机作为控制核心,从而实现全数字化控制,调速性能与直流调速基本相近,但使用变频器时,其维护工作要比直流复杂,一旦发生故障,企业的普通电气人员就很难处理,这里就变频器常见的故障分析一下故障产生的原因及处理方法。
一、参数设置类故障
常用变频器在使用中,是否能满足传动系统的要求,变频器的参数设置非常重要,如果参数设置不正确,会导致变频器不能正常工作。
1、参数设置
常用变频器,一般出厂时,厂家对每一个参数都有一个默认值,这些参数叫工厂值。在这些参数值的情况下,用户能以面板操作方式正常运行的,但以面板操作并不满足大多数传动系统的要求。所以,用户在正确使用变频器之前,要对变频器参数时从以下几个方面进行:
(1)确认电机参数,变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。
(2)变频器采取的控制方式,即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。
(3)设定变频器的启动方式,一般变频器在出厂时设定从面板启动,用户可以根据实际情况选择启动方式,可以用面板、外部端子、通讯方式等几种。
(4)给定信号的选择,一般变频器的频率给定也可以有多种方式,面板给定、外部给定、外部电压或电流给定、通讯方式给定,当然对于变频器的频率给定也可以是这几种方式的一种或几种方式之和。正确设置以上参数之后,变频器基本上能正常工作,如要获得更好的控制效果则只能根据实际情况修改相关参数。
2、参数设置类故障的处理
一旦发生了参数设置类故障后,变频器都不能正常运行,一般可根据说明书进行修改参数。如果以上不行,最好是能够把所有参数恢复出厂值,然后按上述步骤重新设置,对于每一个公司的变频器其参数恢复方式也不相同。
二、过压类故障
变频器的过电压集中表现在直流母线的支流电压上。正常情况下,变频器直流电为三相全波整流后的平均值。若以380V线电压计算,则平均直流电压Ud= 1.35 U线=513V。在过电压发生时,直流母线的储能电容将被充电,当电压上至760V左右时,变频器过电压保护动作。因此,变频器来说,都有一个正常的工作电压范围,当电压超过这个范围时很可能损坏变频器,常见的过电压有两类。
1、输入交流电源过压
这种情况是指输入电压超过正常范围,一般发生在节假日负载较轻,电压升高或降低而线路出现故障,此时最好断开电源,检查、处理。
2、发电类过电压
这种情况出现的概率较高,主要是电机的同步转速比实际转速还高,使电动机处于发电状态,而变频器又没有安装制动单元,有两起情况可以引起这一故障。
(1)当变频器拖动大惯性负载时,其减速时间设的比较小,在减速过程中,变频器输出的速度比较快,而负载靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率所对应的转速还要高,电动机处于发电状态,而变频器没有能量回馈单元,因而变频器支流直流回路电压升高,超出保护值,出现故障,而纸机中经常发生在干燥部分,处理这种故障可以增加再生制动单元,或者修改变频器参数,把变频器减速时间设的长一些。增加再生制动单元功能包括能量消耗型,并联直流母线吸收型、能量回馈型。能量消耗型在变频器直流回路中并联一个制动电阻,通过检测直流母线电压来控制功率管的通断。并联直流母线吸收型使用在多电机传动系统,这种系统往往有一台或几台电机经常工作于发电状态,产生再生能量,这些能量通过并联母线被处于电动状态的电机吸收。能量回馈型的变频器网侧变流器是可逆的,当有再生能量产生时可逆变流器就将再生能量回馈给电网。
(2)多个电动施动同一个负载时,也可能出现这一故障,主要由于没有负荷分配引起的。以两台电动机拖动一个负载为例,当一台电动机的实际转速大于另一台电动机的同步转速时,则转速高的电动机相当于原动机,转速低的处于发电状态,引起故障。在纸机经常发生在榨部及网部,处理时需加负荷分配控制。可以把处于纸机传动速度链分支的变频器特性调节软一些。
三、过流故障
过流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。如果断开负载变频器还是过流故障,说明变频器逆变电路已环,需要更换变频器。
四、过载故障
过载故障包括变频过载和电机器过载。其可能是加速时间太短,直流制动量过大、电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。
五、其他故障
1、欠压
说明变频器电源输入部分有问题,需检查后才可以运行。
2、温度过高
如电动机有温度检测装置,检查电动机的散热情况;变频器温度过高,检查变频器的通风情况。
一、变频器控制回路的抗干扰措施
由于主回路的非线性(进行开关动作),变频器本身就是谐波干扰源,而其周边控制回路却是小能量、弱信号回路,极易遭受其他装置产生的干扰,造成变频器自身和周边设备无法正常的工作。因此,变频器在安装使用时,必须对控制回路采取抗干扰措施。
1. 变频器的基本控制回路
变频器同外部进行信号交流的基本回路有模拟与数字两种:
①4~20mA电流信号回路(模拟);1~5V/0~5V电压信号回路(模拟)。②开关信号回路,变频器的开停指令、正反转指令等(数字)。外部控制指令信号通过上述基本回路导入变频器,同时干扰源也在其回路上产生干扰电势,以控制电缆为媒体入侵变频器。
2. 干扰的基本类型及抗干扰措施
(1)静电耦合干扰:指控制电缆与周围电气回路的静电容耦合,在电缆中产生的电势。
措施:加大与干扰源电缆的距离,达到导体直径40倍以上时,干扰程度就不大明显。在两电缆间设置屏蔽导体,再将屏蔽导体接地。
(2)静电感应干扰:指周围电气回路产生的磁通变化在电缆中感应出的电势。干扰的大小取决干扰源电缆产生的磁通大小,控制电缆形成的闭环面积和干扰电缆与控制电缆间的相对角度。
措施:一般将控制电缆与主回路电缆或其他动力电缆分离铺设,分离距离通常在30cm以上(最低为10cm),分离困难时,将控制电缆穿过铁管铺设。将控制导体绞合间距越小,铺设的路线越短,抗干扰效果越好。
(3)电波干扰:指控制电缆成为天线,由外来电波在电缆中产生电势。
措施:同(1)和(2)所述。必要时将变频器放入铁箱内进行电波屏蔽,屏蔽用铁箱要接地。
(4)接触不良干扰:指变频器控制电缆的电接点及继电器接触不良,电阻发生变化在电缆中产生的干扰。
措施:对继电器采用并联触点或镀金触点继电器或选用密封式继电器。对电缆应定期做拧紧加固处理。
(5)电源线传导干扰:指各种电气设备从同一电源系统获得供电时,由其他设备在电源系统直接产生电势。
措施:变频器的控制电源由另外系统供电,在控制电源的输入侧装设线路滤波器或隔离变压器,且屏蔽接地。
(6)接地干扰:指机体接地和信号接地。对于弱电压电流回路及任何不合理的接地均可诱发干扰,比如设置两个以上接地点,接地处会发生电位差,产生干扰。
措施:速度给定的控制电缆取一点接地,接地线一作为信号的通路使用。电缆的接地在变频器侧进行,使用专设的接地端子,不与其他接地端子共用,并尽量减少接地端子引接点的电阻,一般不大于100ω。
3. 其他注意事项
(1)装有变频器的控制柜,应尽量远离大容量变压器和电动机。其控制电缆线路也应避开这些漏磁通大的设置。
(2)弱电压电流控制电缆不要接近易产生电弧的断路器和接触器。(3)控制电缆建议采用1.25mm×2或2mm×2屏蔽绞合绝缘电缆。
(4)屏蔽电缆的屏蔽要连续到电缆导体同样长。电缆在端子箱中连接时,屏蔽端子要互相连接。
二、变频器常见故障分析
1. 变频器充电启动电路故障
通用变频器一般为电压型变频器,采用交一直一交工作方式,即是输入为交流电源,经三相整流桥后变为直流电压,然后再经三相桥式逆变电路变换为调压调频的三相交流电输出到负载。当变频器刚上电时,由于直流侧的平波电容容量非常大,充电电流很大,通常采用一个启动电阻来限制充电电流,常见的变频启动两种电路,如图1所示。充电完成后,控制电路通过继电器的触点或晶闸管将电阻短路,启动电路故障一般表现为启动电阻烧坏,变频报警显示为直流母线电压故障,一般在设计变频器时,为了减少变频器的体积,启动电阻值选择在10~50ω,功率为10~50ω。
当变频器的交流输入电源频繁通断,或者旁路接触器的触点接触不良时,以及旁路晶闸管导通阻值变大时,都会导致启动电阻烧坏。如遇此情况,可购规格的电阻换届之,同时必须找出引出电阻烧坏的原因,才能将变频器投入使用。
2. 变频器无故障显示,但不能高速运行
某厂一台变频器状态正常,但调不到高速运行,经检查,变频器并无故障,参数设置正确,调速输入信号正常,上电运行时测试出现变频器直流母线电压只有450V左右,正常值为580~600V,再测输入侧,发现缺了一相,原因是输入侧的一个空气开关的一相接触不良造成的。实际上变频器缺一相输入时,是可以工作的,因多数变频器的母线电压下限为400V,只有当直流母线电压降至400V以下时,变频器才报告直流母线低电压故障。当两相输入时,直流母线压为380×1.2=456>400V。当变频器不运行时,由于平波电容的作用,直流电压也可达到正常值。新型的变频器都是采用PWM控制技术,调压调频的工作在逆变桥完成,虽然在低频段输缺相时仍可以正常工作,但因为输入电压低使输出电压低,造成异步电机转矩低,频率上不去,所以不能高速运行。
3. 变频器显示过流故障
出现这种故障显示时,首先检查加速时间参数是否太短,力矩提升参数是否太大,然后检查负载是否太重。如果无这些现象,可以断开输出侧的电流互感器和直流侧的霍尔电流检测点,复位后运行,看是否出现过流现象,如果出现的话,很可能是含有过压过流、欠压、过载、过热、缺相、短路等保护功能的IPM模块出现故障,一般更换IPM模块即可。
4.变频器显示过压故障
这种故障一般是雷雨天气出现,由于雷电串入变频器的电源中,使变频器直流侧的电压检测器动作而跳闸,在这种情况下,通常只须断开变频器电源1min左右,再合上电源,即可复位;另一种情况是变频器驱动大惯性负载,就出现过压现象,这时变频器的减速停止属于再制动,在停止过程中,变频器的输出频率按线性下降,而负载电机的频率高于变频器的输出频率,负载电机处于发电状态,机械能转化为电能,并被变频器直流侧的平波电容吸收,这种能量足够大时,就会产生所谓的“泵升现象”,变频器直流侧的电压会超过直流母线的最大电压而跳闸,对于这种故障,一是将减速时间参数设置长些或增大制动电阻或增加制动单元;二是将变频器的停止方式设置为自由停车。
5.电机发热,变频器显示过载
对于已经投入运行的变频器如果出现这种故障,就必须检查负载的状况.新安装的变频器可能是V/F曲线设置不当或电气参数设置有问题,如一台新装变频器,其驱动的是一台变频电机,电机额定参数为220V/50Hz,而变频器出厂时设置为380V/50Hz,由于安装人员没有正确变频器的V/F参数,导致电机运行一段时间后转子出现磁饱和,致使电机转速降低,发热而过载。在使用变频器的无速度传感器矢量控制方式时,没有正确的设置负载电机的额定电压、电流、容量等参数及设置的变频器载波率过高时,均会导致电机发热过载,另处设计者设计变频器常常在低频段工作,而没有考虑到在低频段工作的电机散热变差的问题,致使电机工作一段时间后发热过载,对于是种情况,需加装散热装置。
交流变频速以其节能显著、保护完善、控制性能好、过载能力强、使用维护方便等特点,迅速发展起来,已成为电动机调速的主潮流。变频调速在我国已进入推广应用阶段。然而由于认识上的局限,人们在VVVF(变频变压)变频器的实际应用中还存在许多错误。怎样结合生产工艺要求正确使用变频器并使其充分发挥效益,已成人们关注的焦点。现结合工程应用中的故障实例,对变频器在应用中普遍存在的问题进行分析。
一、故障实例
1、误操作故障
某水泥厂7#水泥回转窑篦式冷却机设计选用两台Y250M-830kW电动机分别传动两级篦床,变频调速控制,其控制原理如图1所示。图中VVVF是日产富士FRNO37P7-4EX57kVA通用变频频器,装于低压配电室内,其电源接触器及运转命令上冷却机现场和控制室两地操作,KA是篦冷机与破碎机联锁触点。变频器系统试车时,因工艺需要,操作人员在主控室操作SB4断开变频器电源接触器KM,使处于集中控制的篦冷机停车。重新开车时,两台变频器均进入OH2(外部故障)闭锁状态,故障历史查询显示OH2和LU(低电压),检查端子THR随联接良好,电源电压正常,按RESET键复位无效,测量主电路直流电压为518V。经分析故障前篦冷机工作于集中控制状态,参与系统联锁,操作员停变频器电源实现停车时,计算机进行内部数据读操作并获取正转指令,但此时主回路直流电压尚未建立,CPU检测后封锁输出,发出OH2故障信号,因此,导致故障的真正原因是错误操作,而非现场技术人员认为的由电源接触器频繁起动变频器所致。故障原因明确以后,针对现场情况规定了操作程序,开停车使用控制室内的S2(集中控制时)或SB5、SB6开停车按钮,将集中控制室内变频器电源接触器控制按钮SB3、SB4用胶带贴封,仅当停机检修时启用,以避免误操作现象出现,系统运行正常。图1
2、使用条件造成的故障
一家油田某采区所用的九台变频器在短期内烧毁三台,故障都是变频器控制的变压器烧毁导致主板等部件损坏。据了解,该地区电网电压有时高达480V,远超过手册规定的+10%的电压上限,使绝缘裕度较小的控制变压器烧毁。这是一个变频器用于严重过压条件下而损坏的曲型事例。因此,使用变频器时,应对使用现场的电网质量、环境温度、粉尘、干扰等条件认真调查,外部条件不能满足要求时应采取有效措施加以解决。
二、变频器应用中的常见问题及处理方法
1、变频器电源开关的设置与控制
变频器用户手册规定,在电源与主电路端子之间,一定要接一个开关,这是为了确保检修安全。对这一点,一般用户能够按手册要求做。但容易忽视的是手册还建议在开关后装设电磁接触器,其目的是在变频器进入故障保护状态时能及时切断电源,防止故障扩散。在实际使用中,有的用户没有安装,有的使用不合理;如图1方案中电源接触器仅被用来实现远地停送电及变频器的过负荷保护;有些方案则仅用于起、停电动机。这都是不恰当的。由于变频器价格较高,使用时应在电源接触器控制回路中串接变频器故障报警接触器动断触点控制回路中串接变频器故障报警接链接触器动断触点(如富士P7/G7系列的B30、C30触点),这对大容量变频器尤为重要。
变频器电源进线端一定要装设开关,使用中宜优选刀熔开关,该开关有明显的断点,集电源开关、隔离开关、应急开关和是路保护于一体,性能优于目前采用较多的单一熔断器、刀开关或自动空气开关等方案。对大容量变频器应选配快速熔断器以保护整流模块。
变频器电源侧设置接触器应选配快速熔断器以保护整流模块。
变频器电源侧设置接触器并参与故障联锁时,应将控制电源辅助输入端子接于接触器前,以保证变频器主电路断电后,故障显示和集中报警输出信号得以保持,便于实现故障检索及诊断。
2、不应用电源侧接触器频繁起、停电动机
实际应用中,有许多控制方案设置外围电路控制电源侧接触器实现系统软起动特性,图2是某杂志一篇文章推荐的日产三垦(SANKEK)变频器的控制方案。由图可知,该方案电动机起动时按SB2,其触点闭合,KA1得电,其动合触点分别发出变频器运行和时间继电器KT的激励命令,KT延时断开动合触点提供继电器KA2激励命令,KA2动合触点控制KM吸合,变频器得电起动电动机。停车时按SB1发出停车命令,KA1断电,其动合触点复位,取消运行命令并使KT断电,KT动合触点延时20s复位,电源接触器KM断电,实现当KM起动时,先闭合KA1,停止时先断开KA1的办法,可达到起动、停止软特性,从而避免电动机反馈电压侵入变频器。图2 上述方案建议利用电源接触器直接起动变频器来实现电动机起动、停止的软特性是错误的。由图3可知,当电压型交-直-交变频器通电时,主电路将产生较大充电电流,频繁重复通断电,将产生热积累效应,引起元件的热疲劳,缩短设备寿命。因此上述方案不适用于频繁起动的设备。对不频繁起动的设备也无优越性(某些大容量变频器根本无法起动,如例1所述),因为变频器本身具有优越的控制性能,实现软起动特性应优先考虑利用正、反转命令和通过加、减速速时间设定实现,无谓地增加许多外围电路器件,不但浪费资金而且降低了系统的可靠性,大大降低了响应速度,加大维护工作量,增加损耗,是不足取的。图3
3、电动机过载保护宜优先选择电子热继电器
一部分专业人员认为,变频器内部的过载保护只是为保护其自身而设,对电动机过载保护不适用,为了保护电动机,必须另设热继电器。在实际应用中,笔者所见各种变频调速控制方案也绝大多数在电路的不同位置设置了热继电器,以完成所控单台电动机的过负荷保护,这显然又是一种误解。对一台变频器控制一台标准四极电动机的控制方案而言,使用变频器电子热过载继电器保护电动机过载,无疑要优于外加热继电器,对普通电动机可利用其矫正特性解决低速运行时冷却条件恶化的问题,使保护性能更可靠。尤其是新型高机能变频器(如富士9S系列)现已在用户手册中给出设定曲线,用户可根据工艺条件设定。通常,考虑到变频器与电动机的匹配,电子热过载继电器可在50%~105%额定电流范围内选择设定。
只有在下列情况时,才用常规热继电器代替电子热继电器:
所用电动机不是四极电动机。
使用特殊电动机(非标准通用电动机)
一台变频器控制多台电动机。电动机频繁起动。
但是,如果用户有丰富的运行经验时,笔者仍建议通过电子热继电器的合理设定(引入校正系数)来完成单台电动机变频调速的过载保护。
当变步器选用外部热继电器进行电动机过载保护时,热继电器应装设于变频器输出侧,常见的装于输入侧的方案起不到保护作用(变频器的变频变压特性使 其低频时输入电流远远小于输出电流)。过载保护应根据设备工艺要求情况,采用变频器停止命令(断开CM)或空转停车(断开BX)命令实现停车,不宜通过电源接触器实现。
4、变频器与电动机间不宜装设接触器
装设于变频器和电动机间的接触器在电动机运行时通断,将产生操作过电压,对变频器造成损害,因此,用户手册要求原则上不要在变频器与电动机之间装设接触器。但是,当变频器用于下列情况时,仍有必要设置:
当用于节能控制的变频调速系统时常工作于额定转速,为实现经济运行需切除变频器时。
参与重要工艺流程,不能长时间停运,需切换备用控制系统以提高系统可靠性时。
一台变频器控制多台电动机(包括互为备用的电动机)时。变频器输出侧设置电磁时,设计外围电路应避免接触器在变频器有输出时动作,任何时候严禁将电源接入变频器输出端。
目前,有些用户为了方便测试负荷电缆和电动机绝缘,在变频器输出侧设置自动空气开关,用以在测试时切除变频器,该法弊大于利。由于变频器输出电缆(线)要求选用屏蔽电缆或穿管敷设,缆线故障几率很小,通常情况下测量电动机及电缆绝缘时,可选用铅丝或软铜线将变频器输入、输出、直流电抗器和制动单元联接端子可靠短接后进行测试,仅在需要测量电缆相间绝缘时拆线检测,确无必要增加投资,否则还要采取可靠措施,防止在运行中误操作。
5、电流检测时电汉互感器的设置及电流表的选择
由于设计人员或用户容易忽视变频器输出频率的变化特性,在电流检测及仪表选型上经学出现错误。变频器输出侧电流测量应使用电磁经系仪表,以获得所需的测量精度。例如,某杂志刊登的《一起变频器不能复位的故障处理》一文,提出变频器输出侧不能使用普通电流互感器,这是错误的论点。在变频器输出侧使用普通电流互感器是可以完成输出电流检测的。由电流互感器铁心磁通密度计算公式Bmake=K2/4.44fSmW2可知,铁心的磁通密度与交流电流频率的变化成反比,忽略次要因素时,其电流误差(即变化误差)和相位误差可看作与电流频率变化成反比,只是当电流频率超过1kHz时,铁心温度会增高。但是,由于互感器正常运行时激磁电流设计得很小(主要为了减小误差),因此,普通电流互感器用于50Hz频率附近时,其电流误差是很小的。通过实际校验对比可知,当变频器输出频率在10~50Hz之间变化时,电磁系电流表指示误差很小,实测误差在1.27%以下,并与电流频率变化成反比(以变频器输出电流指示为基准),能够满足输出电流监视的要求。此外,尤其是当变频调速系统驱动负载变化不太大的往复运动设备时,由于设备传动力矩的周期性变化,使变频器输出电流产生一定波动,变频器的LED数码显示电流值跳字严重,造成观察读数困难,采用模拟电流表可有效地解决这个问题。
应当注意的是,使用指针式电流表测量变频器输出侧电流时,必须选择电磁经系仪表(手册通常称作动铁式),使用时应严格按用户手册的规定选择安装,以保证应有的精度。如选用整流系仪表(该错误非常普遍)时,经实测在19~50Hz区间,指示误差为69.7%~16.66%,且为负偏差。
此外,由于变频器的输入电流一般不大于输出电流,因此,输入侧设置电流监视意义不大,一般有信号灯指示电源即可,如电压不稳时可设电压表监视。大容量变频器低频运行时,其输入侧电流表可能无指示。
如今,变频器已具有很强的功能,但是,国内的应用情况在很大程度上与录像机一样,其功能的开发与正确应用十分有限,许多地方仅限于能够开停车和调速的应用。因此,迅速提高技术人员的应用水平,对发挥变频器的节能和优良的控制性能是十分重要的。
1、加速时:
外部原因可能有:输出回路有接地或相间短路现象。若是则排除之。若是矢量控制变频器,则可能是参数没有辨识或辨识不准确,需重新进行参数辨识。
若是V/F控制方式,则可能有如下原因: A、加速时间过短,使变频器的输出电压上升太快,解除办法是延长加速时间, 若工艺要求快速起动则需选用大一档的型号。B、手动提升转矩设置不合适。另外还可能和下列因素相关:
A、电压是否偏低?若是则将电压调至正常范围。
B、是否对正在运行的电机起动?若是则选择转速跟踪再起动或等电机停止后起动
C、起动过程是否有突加负载?若是则取消突加负载。D、变频器型号是否选小?若是则选择合适型号。
2、减速时:
变频器减速时过电流一般都是由电机惯性负载造成,当电机一下子从高速变为低速时,由于负载存在惯性,电机变成发电机向变频器回馈电能所致,解除办法是延长减速时间,或増加制动单元。 fhdjf(2007-6-06 12:37:32)在变频器日常维护过程中,经常遇到各种各样的问题,如外围线路问题,参数设定不良或机械故障。如果是变频器出现故障,如何去判断是哪一部分问题,在这里略作介绍。
一、静态测试
1、测试整流电路
找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,应该有大约几十欧的阻值,且基本平衡。相反将黑表棒接到P 端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复 以上步骤,都应得到相同结果。如果有以下结果,可以判定电路已出现异常,A.阻值 三相不平衡,可以说明整流桥故障。B.红表棒接P端时,电阻无穷大,可以断定整流桥 故障或起动电阻出现故障。
2、测试逆变电路
将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基 本相同,反相应该为无穷大。将黑表棒接到N端,重复以上步骤应得到相同结果,否则 可确定逆变模块故障
二、动态测试
在静态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意 以下几点:
1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。
2、检查变频器各接播口是否已正确连接,连接是否有松动,连接异常有时可能导致变频器出现故障,严重时会出现炸机等情况。
3、上电后检测故障显示内容,并初步断定故障及原因。
4、如未显示故障,首先检查参数是否有异常,并将参数复归后,进行空载(不接电机)情况下启动变频器,并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况,则模块或驱动板等有故障
5、在输出电压正常(无缺相、三相平衡)的情况下,带载测试。测试时,最好是满负载测试。
三、故障判断
1、整流模块损坏
一般是由于电网电压或内部短路引起。在排除内部短路情况下,更换整流桥。在现场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有污染 的设备等。
2、逆变模块损坏
一般是由于电机或电缆损坏及驱动电路故障引起。在修复驱动电路之后,测驱动波
形良好状态下,更换模块。在现场服务中更换驱动板之后,还必须注意检查马达及连接电缆。在确定无任何故障下,运行变频器。
3、上电无显示
一般是由于开关电源损坏或软充电电路损坏使直流电路无直流电引起,如启动电阻损坏,也有可能是面板损坏。
4、上电后显示过电压或欠电压
一般由于输入缺相,电路老化及电路板受潮引起。找出其电压检测电路及检测点,更换损坏的器件。
5、上电后显示过电流或接地短路
一般是由于电流检测电路损坏。如霍尔元件、运放等。
6、启动显示过电流
一般是由于驱动电路或逆变模块损坏引起。
7、空载输出电压正常,带载后显示过载或过电流
该种情况一般是由于参数设置不当或驱动电路老化,模块损伤引起.
一、变频器的空载通电
1.1 将变频器的接地端子接地。
1.2 将变频器的电源输入端子经过漏电保护开关接到电源上。
1.3 检查变频器显示窗的出厂显示是否正常,如果不正确,应复位,否则要求退换。
1.4 熟悉变频器的操作键。
一般的变频器均有运行(RUN)、停止(STOP)、编程(PROG)、数据P确认(DATAPENTER)、增加(UP、▲)、减少(DOWN、“)等6个键,不同变频器操作键的定义基本相同。此外有的变频器还
有监视(MONITORPDISPLAY)、复位(RESET)、寸动(JOG)、移位(SHIFT)等功能键。
二、变频器带电机空载运行
2.1 设置电机的功率、极数,要综合考虑变频器的工作电流。
2.2 设定变频器的最大输出频率、基频、设置转矩特性。VPf类型的选择包括最高频率、基本频率和转矩类型等项目。最高频率是变频器—电动机系统可以运行的最高频率,由于变频器自身的最高频率可能较高,当电动机容许的最高频率低于变频器的最高频率时,应按电动机及其负载的要求进行设定。基本频率是变频器对电动机进行恒功率控制和恒转矩控制的分界线,应按电动机的额定电压进行设定。转矩类型指的是负载是恒转矩负载还是变转矩负载。用户根据变频器使用说明书中的
VPf 类型图和负载特点,选择其中的一种类型。通用变频器均备有多条VPf 曲线供用户选择,用户在使用时应根据负载的性质选择合适的VPf 曲线。如果是风机和泵类负载,要将变频器的转矩运行代码设置成变转矩和降转矩运行特性。为了改善变频器启动时的低速性能,使电机输出的转矩能满足生产负载启动的要求,要调整启动转矩。在异步电机变频调速系统中,转矩的控制较复杂。在低频段,由于电阻、漏电抗的影响不容忽略,若仍保持VPf 为常数,则磁通将减小,进而减小了电机的输出转矩。为此,在低频段要对电压进行适当补偿以提升转矩。一般变频器均由用户进行人工设定补偿。日立J300 变频器则为用户提供两种选择:自行设定和自动转矩提升。
2.3 将变频器设置为自带的键盘操作模式,按运行键、停止键,观察电机是否能正常地启动、停止。
2.4 熟悉变频器运行发生故障时的保护代码,观察热保护继电器的出厂值,观察过载保护的设定值,需要时可以修改。变频器的使用人员可以按变频器的使用说明书对变频器的电子热继电器功能进行设定。电子热继电器的门限值定义为电动机和变频器两者的额定电流的比值,通常用百分数表示。当变频器的输出电流超过其容许电流时,变频器的过电流保护将切断变频器的输出。因此,变频器电子热继电器的门限最大值不超过变频器的最大容许输出电流。
三、带载试运行
3.1 手动操作变频器面板的运行停止键,观察电机运行停止过程及变频器的显示窗,看是否有异常现象。
3.2 如果启动P停止电机过程中变频器出现过流保护动作,应重新设定加速P减速时间。电机在加、减速时的加速度取决于加速转矩,而变频器在启、制动过程中的频率变化率是用户设定的。若电机转动惯量或电机负载变化,按预先设定的频率变化率升速或减速时,有可能出现加速转矩不够,从而造成电机失速,即电机转速与变频器输出频率不协调,从而造成过电流或过电压。因此,需要根据电机转动惯量和负载合理设定加、减速时间,使变频器的频率变化率能与电机转速变化率相协调。检查此项设定是否合理的方法是先按经验选定加、减速时间进行设定,若在启动过程中出现过流,则可适当延长加速时间;若在制动过程中出现过流,则适当延长减速时间。另一方面,加、减速时间不宜设定太长,时间太长将影响生产效率,特别是频繁启、制动时。
3.3 如果变频器在限定的时间内仍然保护,应改变启动P停止的运行曲线,从直线改为S 形、U 形线或反S 形、反U 形线。电机负载惯性较大时,应该采用更长的启动停止时间,并且根据其负载特性设置运行曲线类型。
3.4 如果变频器仍然存在运行故障,应尝试增加最大电流的保护值,但是不能取消保护,应留有至少10 %~20 %的保护余量。
3.5 如果变频器运行故障还是发生,应更换更大一级功率的变频器。
3.6如果变频器带动电机在启动过程中达不到预设速度,可能有两种情况:
(1)系统发生机电共振,可以从电机运转的声音进行判断。
采用设置频率跳跃值的方法,可以避开共振点。一般变频器能设定三级跳跃点。VPf 控制的变频器驱动异步电机时,在某些频率段,电机的电流、转速会发生振荡,严重时系统无法运行,甚至在加速过程中出现过电流保护使得电机不能正常启动,在电机轻载或转动惯量较小时更为严重。普通变频器均备有频率跨跳功能,用户可以根据系统出现振荡的频率点,在VPf 曲线上设置跨跳点及跨跳宽度。当电机加速时可以自动跳过这些频率段,保证系统能够正常运行。
(2)电机的转矩输出能力不够,不同品牌的变频器出厂参数设置不同,在相同的条件下,带载能力不同,也可能因变频器控制方法不同,造成电机的带载能力不同;或因系统的输出效率不同,造成带载能力会有所差异。对于这种情况,可以增加转矩提升量的值。如果达不到,可用手动转矩提升功能,不要设定过大,电机这时的温升会增加。如果仍然不行,应改用新的控制方法,比如日立变频器采用VPf 比值恒定的方法,启动达不到要求时,改用无速度传感器空间矢量控制方法,它具有更大的转矩输出能力。对于风机和泵类负载,应减少降转矩的曲线值。
四、变频器与上位机相连进行系统调试
在手动的基本设定完成后,如果系统中有上位机,将变频器的控制线直接与上位机控制线相连,并将变频器的操作模式改为端子控制。根据上位机系统的需要,调定变频器接收频率信号端子的量程0~5V 或0~10V ,以及变频器对模拟频率信号采样的响应速度。如果需要另外的监视表头,应选择模拟输出的监视量,并调整变频器输出监视量端子的量程。 1过流(OC)
过流是变频器报警最为频繁的现象。1.1现象
(1)重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。(2)上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。
(3)重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。1.2 实例
(1)一台LG-IS3-4 3.7kW变频器一启动就跳“OC”
分析与维修:打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,更换后三路基本一样。模块装上上电运行一切良好。(2)一台BELTRO-VERT 2.2kW变频通电就跳“OC”且不能复位。
分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。
二、过压(OU)
过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。(1)实例
一台台安N2系列3.7kW变频器在停机时跳“OU”。
分析与维修:在修这台机器之前,首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。
三、欠压(Uu)欠压也是我们在使用中经常碰到的问题。主要是因为主回路电压太低(220V系列低于200V,380V系列低于400V),主要原因:整流桥某一路损坏或可控硅三路中有工作不正常的都有可能导致欠压故障的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电电阻上面有可能导致欠压.还有就是电压检测电路发生故障而出现欠压问题。3.1 举例
(1)一台CT 18.5kW变频器上电跳“Uu”。
分析与维修:经检查这台变频器的整流桥充电电阻都是好的,但是上电后没有听到接触器动作,因为这台变频器的充电回路不是利用可控硅而是靠接触器的吸合来完成充电过程的,因此认为故障可能出在接触器或控制回路以及电源部分,拆掉接触器单独加24V直流电接触器工作正常。继而检查24V直流电源,经仔细检查该电压是经过LM7824稳压管稳压后输出的,测量该稳压管已损坏,找一新品更换后上电工作正常。
(2)一台DANFOSS VLT5004变频器,上电显示正常,但是加负载后跳“ DC LINK UNDERVOLT”(直流回路电压低)。
分析与维修:这台变频器从现象上看比较特别,但是你如果仔细分析一下问题也就不是那么复杂,该变频器同样也是通过充电回路,接触器来完成充电过程的,上电时没有发现任何异常现象,估计是加负载时直流回路的电压下降所引起,而直流回路的电压又是通过整流桥全波整流,然后由电容平波后提供的,所以应着重检查整流桥,经测量发现该整流桥有一路桥臂开路,更换新品后问题解决。
四、过热(OH)
过热也是一种比较常见的故障,主要原因:周围温度过高,风机堵转,温度传感器性能不良,马达过热。举例
一台ABB ACS500 22kW变频器客户反映在运行半小时左右跳“OH”。分析与维修:因为是在运行一段时间后才有故障,所以温度传感器坏的可能性不大,可能变频器的温度确实太高,通电后发现风机转动缓慢,防护罩里面堵满了很多棉絮(因该变频器是用在纺织行业),经打扫后开机风机运行良好,运行数小时后没有再跳此故障。
五、输出不平衡
输出不平衡一般表现为马达抖动,转速不稳,主要原因:模块坏,驱动电路坏,电抗器坏等。5.1举例
一台富士 G9S 11KW变频器,输出电压相差100V左右。
分析与维修:打开机器初步在线检查逆变模块(6MBI50N-120)没发现问题,测量6路驱动电路也没发现故障,将其模块拆下测量发现有一路上桥大功率晶体管不能正常导通和关闭,该模块已经损坏,经确认驱动电路无故障后更换新品后一切正常。
六、过载
过载也是变频器跳动比较频繁的故障之一,平时看到过载现象我们其实首先应该分析一下到底是马达过载还是变频器自身过载,一般来讲马达由于过载能力较强,只要变频器参数表的电机参数设置得当,一般不大会出现马达过载.而变频器本身由于过载能力较差很容易出现过载报警.我们可以检测变频器输出电压。
七、开关电源损坏
这是众多变频器最常见的故障,通常是由于开关电源的负载发生短路造成的,丹佛斯变频器采用了新型脉宽集成控制器UC2844来调整开关电源的输出,同时UC2844还带有电流检测,电压反馈等功能,当发生无显示,控制端子无电压,DC12V,24V风扇不运转等现象时我们首先应该考虑是否开关电源损坏了。
八、SC故障
SC故障是安川变频器较常见的故障。IGBT模块损坏,这是引起SC故障报警的原因之一。此外驱动电路损坏也容易导致SC故障报警。安川在驱动电路的设计上,上桥使用了驱动光耦PC923,这是专用于驱动IGBT模块的带有放大电路的一款光耦,安川的下桥驱动电路则是采用了光耦PC929,这是一款内部带有放大电路,及检测电路的光耦。此外电机抖动,三相电流,电压不平衡,有频率显示却无电压输出,这些现象都有可能是IGBT模块损坏。IGBT模块损坏的原因有多种,首先是外部负载发生故障而导致IGBT模块的损坏如负载发生短路,堵转等。其次驱动电路老化也有可能导致驱动波形失真,或驱动电压波动太大而导致IGBT损坏,从而导致SC故障报警。
九、GF—接地故障
接地故障也是平时会碰到的故障,在排除电机接地存在问题的原因外,最可能发生故障的部分就是霍尔传感器了,霍尔传感器由于受温度,湿度等环境因数的影响,工作点很容易发生飘移,导致GF报警。
十、限流运行
在平时运行中我们可能会碰到变频器提示电流极限。对于一般的变频器在限流报警出现时不能正常平滑的工作,电压(频率)首先要降下来,直到电流下降到允许的范围,一旦电流低于允许值,电压(频率)会再次上升,从而导致系统的不稳定。丹佛斯变频器采用内部斜率控制,在不超过预定限流值的情况下寻找工作点,并控制电机平稳地运行在工作点,并将警告信号反馈客户,依据警告信息我们再去检查负载和电机是否有问题。 过电流跳闸的原因分析
(1)重新起动时,一升速就跳闸。这是过电流十分严重的表现。
主要原因有:
1)负载侧短路
2)工作机械卡住
3)逆变管损坏
4)电动机的起动转矩过小,拖动系统转不起来
(2)重新起动时并不立即跳闸,而是在运行过程中跳闸
可能的原因有:
1)升速时间设定太短
2)降速时间设定太短
3)转矩补偿设定较大,引起低速时空载电流过大
4)电子热继电器整定不当,动作电流设定得太小,引起误动作
电压跳闸的原因分析
(1)过电压跳闸,主要原因有:
1)电源电压过高
2)降速时间设定太短
3)降速过程中,再生制动的放电单元工作不理想
a.来不及放电,应增加外接制动电阻和制动单元
b.放电支路发生故障,实际并不放电
(2)欠电压跳闸,可能的原因有:
1)电源电压过低
2)电源断相
3)整流桥故障 电动机不转的原因分析
(1)功能预置不当
1)上限频率与最高频率或基本频率和最高频率设定矛盾
2)使用外接给定时,未对”键盘给定/外接给定“的选择进行预置
3)其他的不合理预置
(2)在使用外接给定时,无”起动"信号
(3)其它原因:
1)机械有卡住现象
2)电动机的起动转矩不够
3)变频器的电路故障
在变频器的使用中,由于对变频器的选型及使用不当,往往会引起变频器不能正常运行、甚至引发设备故障,导致生产中断,带来不必要的经济损失。本文以富士FRNP7/G7变频器为例,讲述变频器使用应注意的几个问题。1选型
一台喂料油隔泵采用变频控制,电机型号为JR127_
10、115kW,Ue=380V,Ie=231A,使用FRNll0P7-4EX变频器。运行中发现有时虽然给定频率高,但实际频率调不上去、变频器跳闸频繁,故障指示为“OLl”,即变频器过载。经检查,变频器的额定电流为210A,而油隔泵电机在高下料量时运行电流在220A左右波动,驱动转矩达到极限设定,使频率不能上调,运行电流大于变频器额定电流,变频器过流跳停。分析认为其原因是变频器容量选择偏小。变频器的选型应满足以下条件:(1)电压等级与控制电机相符。
(2)额定电流为控制电机额定电流的1.1~1.5倍。(3)根据被控设备的负载特性选择变频器的类型。
油隔泵为恒转矩负载,最好选用驱动转矩极限范围宽的G7变频器。选择FRNl60G7_4EX,变频器额定电压为400V,额定输出电流为304A,驱动转矩极限为150%,改用FRNl60G7。4EX后,上述问题再也没有发生。2安装环境
由于变频器集成度高,整体结构紧凑,自身散热量较大,因此对安装环境的温度、湿度和粉尘含量要求高。山西铝厂的变频器安装于操作室内,因安装车间属于干法车间,变频器运行环境差,操作室粉尘多,夏季室内温度高,曾多次发生变频器故障。在对操作室进行密封和加冷却设施后,情况大为改善。后来因操作室集中空调冷凝水较多,距离柜子太近,发生了一起变频器控制板元件损坏的故障。可见在安装变频器的同时,必须为变频器提供一个好的运行环境。3参数设定
变频器的设定参数多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。
(1)外加起停按钮及电位器调频无效。变频器出厂时设定为通过键盘面板操作,外部控制无效,端子FWD_CM用短接片短接。选择外部起停及调频控制时,必须将该短接片去掉。出现上面问题,可能是FWD,CM短接片未取掉,操作方式和调频方式参数选择错误所致,应重点对该部分进行检查。
(2)变频器在电机空载时工作正常,但不能带载起动。这种问题常常出现在恒转矩负载。山西铝厂一台FRNl60P7。4EX变频器在试车时电机空试正常、但一带负荷即跳闸,提高了加减速时间后仍无法带载。继续检查转矩提升值,将转矩提升值由“2”改为“7”后,提高了低频时的电压输出。改善了低频时的带载特性,电机带载正常。遇到上述问题时应重点检查加、减速时间设定及转矩提升设定值。(3)变频器投入运行、电机还未起动就过载跳停。山西铝厂一台7.5kW_6极电机采用变频控制,变频器在投入运行起动时、频繁跳停。经查原设定时将偏置频率设定为2H2、变频器在接到运行指令但未给出调频信号之前、受控电机将一直接收2H2的低频运行指令而无法起动。经测定该电机的堵转电流达到47A,约为电机额定电流3倍,变频器过载保护动作属正常。改偏置频率为0Hz,电机起动正常。
(4)频率已经达到较大值,但电机转速仍不高。一台新投用的变频器频率设置显示已经很大,但电机转速明显较同频率下其它电机低。检查频率增益设定值为150%。由频率设定信号增益定义可知:设定增益为设定模拟频率信号对输出频率的比率,假设设定频率为30Hz,实际输出频率仅为20H2。将设定增益改为100%后,问题得到解决。
(5)频率上升到一定数值,继续向上调节时,频率保持在一定值不断跳跃,转速不能提高。变频器工作时,将自动计算输出转矩,并将输出转矩限制在设定值内。如果驱动转矩设定值偏小,将可能因输出转矩受到限制,使变频器输出频率达不到给定频率。遇到上面的问题,应检查驱动转矩设定值是否偏小,变频器的容量是否偏小,再设法解决。4故障诊断
变频器拥有较强的故障诊断功能,对变频器内部整流、逆变部分,CPU及外围通讯与电动机等故障进行保护。变频器在保护跳闸后故障复位前,将一直显示故障代码。根据故障指示代码确定故障原因,可缩小故障查找范围,大大减少故障查找时间。
(1)一台变频器在清扫后启动时,显示“OH2”故障指示跳停,OH2指变频器外部故障。出厂时连接外部故障信号的端子“THR”与“CM”之间用短接片短接,因这台变频器没有加装外保护,THR_CM仍应短接。经检查,由于66THR”与“CM’之间的短接片松动,在清扫时掉下。恢复短接片后变频器运行正常。
(2)变频器一启动就跳停,故障指示为“OCl”、OCl为加速时过电流,怀疑为电机故障,将变频器与电机连接线断开,检查电机绕组匝间短路。更换电机后变频器运行正常。
(3)夏季如果变频器操作室的制冷、通风效果不良,环境温度升高,则经常发生“OHl”、“OH3”过热保护跳停。这时应检查变频器内部的风扇是否损坏,操作室温度是否偏高,应采取措施进行强制冷却,保证变频器安全过夏。
(4)变频器在频率调到15Hz以上时,“LU”欠电压保护动作。“LU”保护信号指整流电压不足。我们从整流部分向变频器电源输入端检查,发现电源输入侧缺相,由于电压表从另外两相取信号,电压表指示正常,没有及时发现变频器输入侧电源缺相。输入端缺相后,由于变频器整流输出电压下降,在低频区、因充电电容的作用还可调频,但在频率调至一定值后,整流电压下降较快、造成变频器“LU”跳闸。5维护
变频器运行过程中,可以从设备外部目视检查运行状况有无异常,专职点检员可以通过键盘面板转换键查阅变频器的运行参数,如输出电压、输出电流、输出转矩、电机转速等,掌握变频器日常运行值的范围,以便及时发现变频器及电机问题。此外,还要注意以下几点:
(1)设专人定期对变频器进行清扫、吹灰,保持变频器内部的清洁及风道的畅通。(2)保持变频器周围环境清洁、干燥。严禁在变频器附近放置杂物.
(3)每次维护变频器后,要认真检查有无遗漏的螺丝及导线等,防止小金属物品造成变频器短路事故。
(4)测量变频器(含电机)绝缘时,应当使用500V兆欧表。如仅对变频器进行检测,要拆去所有与变频器端子连接的外部接线。清洁器件后,将主回路端子全部用导线短接起来,将其与地用兆欧表试验,如果兆欧表指示在5M欧以上,说明是正常的,这样做的目的是减少摇测次数。
自80年代通用变频器进入中国市场以来,在短短的十几年时间里得到了非常广泛的应用。目前,通用变频器以其智能化、数字化、网络化等优点越来越受到人们的青睐。随着通用变频器应用范围的扩大,暴露出来的问题也越来越多,主要有以下几方面: ① 谐波问题
② 变频器负载匹配问题 ③ 发热问题
以上这些问题已经引起了有关管理部门和厂矿的注意并制定了相关的技术标准。如谐波问题,我国于1984年和1993年通过了“电力系统谐波管理暂行规定”及GB/T-14549-93标准,用以限制供电系统及用电设备的谐波污染。针对上述问题,本文进行了分析并提出了解决方案及对策。2 谐波问题及其对策
通用变频器的主电路形式一般由三部分组成:整流部分、逆变部分和滤波部分。整流部分为三相桥式不可控整流器,逆变器部分为IGBT三相桥式逆变器,且输出为PWM波形。对于双极性调制的变频器,其输出电压波形展开式为:(1)式中:n—谐波的次数n=1,3,5„„;a1—开关角,i=1,2,3„„N/2;Ed—变频器直流侧电压;N—载波比。
由(1)式可见,各项谐波的幅值为(2)令n=1,则得出变频器输出电压的基波幅值为:(3)从(1)、(2)、(3)式可以看出,通用变频器的输出电压中确实含有除基波以外的其他谐波。较低次谐波通常对电机负载影响较大,引起转矩脉动,而较高的谐波又使变频器输出电缆的漏电流增加,使电机出力不足,故变频器输出的高低次谐波都必须抑制。
如前所述,由于通用变频器的整流部分采用二极管不可控桥式整流电路,中间滤波部分采用大电容作为滤波器,所以整流器的输入电流实际上是电容器的充电电流,呈较为陡峻的脉冲波,其谐波分量较大。为了消除谐波,可采用以下对策: ① 增加变频器供电电源内阻抗
通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。这种内阻抗就是变压器的短路阻抗。当电源容量相对变频器容量越小时,则内阻抗值相对越大,谐波含量越小;电源容量相对变频器容量越大时,则内阻抗值相对越大,谐波含量越大。对于三菱FR-F540系列变频器,当电源内阻为4%时,可以起到很好的谐波抑制作用。所以选择变频器供电电源变压器时,最好选择短路阻抗大的变压器。② 安装电抗器
安装电抗器实际上从外部增加变频器供电电源的内阻抗。在变频器的交流侧安装交流电抗器或在变频器的直流侧安装直流电抗器,或同时安装,抑制谐波电流。表一列出了三菱FR-A540变频器安装电抗器和不安装电抗器的含量对照表。③ 变压器多相运行
通用变频器的整流部分是六脉波整流器,所以产生的谐波较大。如果应用变压器的多相运行,使相位角互差30°如Y-△、△-△组合的两个变压器构成相当于12脉波的效果则可减小低次谐波电流28%,起到了很好的谐波抑制作用。④ 调节变频器的载波比
从(1)、(2)、(3)式可以看出,只要载波比足够大,较低次谐波就可以被有效地抑制,特别是参考波幅值与载波幅值小于1时,13次以下的奇数谐波不再出现。⑤ 专用滤波器
该专用滤波器用于检测变频器谐波电流的幅值和相位,并产生一个与谐波电流幅值相同且相位正好相反的电流,通到变频器中,从而可以非常有效地吸收谐波电流。负载匹配问题及其对策
生产机械的种类繁多,性能和工艺要求各异,其转矩特性是复杂的,大体分为三种类型:恒转矩负载、风机泵类负载和恒功率负载。针对不同的负载类型,应选择不同类型的变频器。① 恒转矩负载
恒转矩负载是指负载转矩与转速无关,任何转速下,转矩均保持恒定。恒转矩负载又分为摩擦类负载和位能式负载。
摩擦类负载的起动转矩一般要求额定转矩的150%左右,制动转矩一般要求额定转矩的100%左右,所以变频器应选择那些具有恒定转矩特性,并且起动和制动转矩都比较大,过载时间长和过载能力大的变频器。如三菱变频器FR-A540系列。位能式负载一般要求大的起动转矩和能量回馈功能,能够快速实现正反转,变频器应选择具有四象限运行能力的变频器。如三菱变频器FR-A241系列。② 风机泵类负载
风机泵类负载是目前工业现场应用最多的设备,虽然泵和风机的特性多种多样,但是主要以离心泵和离心风机应用为主,通用变频器在这类负载上的应用最多。风机泵类负载是一种平方转矩负载,其转速n与流量Q,转矩T与泵的轴功率N有如下关系式:(4)这类负载对变频器的性能要求不高,只要求经济性和可靠性,所以选择具有U/f=const控制模式的变频器即可。如三菱变频器FR-F540(L)系列。风机负载在实际运行过程中,由于转动惯量比较大,所以变频器的加速时间和减速时间是一个非常重要的问题,可按下列公式进行计算:(5)(6)式中:tACC—加速时间(s);tDEC—减速时间(s);GD2—折算到电机轴上的转动惯量(N·m2);g—重力加速度,g=9.81(m/s2);TM—电动机的电磁转矩(N.m);TL—负载转矩(N.m);nAS—系统加速时的初始速度(r/min);nAE—系统加速时的终止速度(r/min);nDS—系统减速时的初始速度(r/min);nDE—系统减速时的终止速度(r/min)。
从上式可以看出,风机负载的系统转动惯量计算是非常重要的。变频器具体设计时,按上式计算结果,进行适当修正,在变频器起动时不发生过流跳闸和变频器减速时不发生过电压跳闸的情况下,选择最短时间。
泵类负载在实际运行过程中,容易发生喘振、憋压和水垂效应,所以变频器选型时,要选择适于泵类负载的变频器且变频器在功能设定时要针对上述问题进行单独设定: 喘振:测量易发生喘振的频率点,通过设定跳跃频率点和宽度,避免系统发生共振现象。
憋压:泵类负载在低速运行时,由于系统憋压而导致流量为零,从而造成泵烧坏。在变频器功能设定时,通过限定变频器的最低频率,而限定了泵流量的临界点处的系统最低转速,这就避免了此类现象的发生。水垂效应:泵类负载在突然断电时,由于泵管道中的液体重力而倒流。若逆止阀不严或没有逆止阀,将导致电机反转,因电机发电而使变频器发生故障报警烧坏。在变频器系统设计时,应使变频器按减速曲线停止,在电机完全停止后再断开主电路电,或者设定“断电减速停止”功能,这样就避免了该现象的发生。③ 恒功率负载
恒功率负载是指转矩大体与转速成反比的负载,如卷取机、开卷机等。利用变频器驱动恒功率负载时,应该是就一定的速度变化范围而言的,通常考虑在某个转速点以下采用恒转矩调速方式,而在高于该转速点时才采用恒功率调速方式。我们通常将该转速点称为基频,该点对应的电压为变频器输出额定电压。从理论上讲,要想实现真正意义上的恒功率控制,变频器的输出频率f和输出电压U必须遵循U2/f=const协调控制,但这在实际变频器运行过程中是不允许的,因为在基频以上,变频器的输出电压不能随着其输出频率增加,只能保持额定电压,所以只能是一种近似意义上的恒功率控制。4 发热问题及其对策
变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。为了保证变频器正常可靠运行,必须对变频器进行散热,通常采用以下方法: ① 采用风扇散热:变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行。
② 降低安装环境温度:由于变频器是电子装置,内含电子元、电解电容等,所以温度对其寿命影响比较大。通用变频器的环境运行温度一般要求-10℃~-50℃,如果能够采取措施尽可能降低变频器运行温度,那么变频器的使用寿命就延长,性能也比较稳定。
我们采取两种方法:一种方法是建造单独的变频器低压间,内部安装空调,保持低压间温度在+15℃~+20℃之间。另一种方法是变频器的安装空间要满足变频器使用说明书的要求。
以上所谈到的变频器发热是指变频器在额定范围之内正常运行的损耗。当变频器发生非正常运行(如过流,过压,过载等)产生的损耗必须通过正常的选型来避免此类现象的发生。对于风机泵类负载,当我们选择三菱变频器FR-F540时,其过载能为120%/60秒,其过载周期为300秒,也就是说,当变频器相对于其额定负载的120%过载时,其持续时间为60秒,并且在300秒之内不允许出现第二次过载。当变频器出现过载时,功率单元因其流过的过载电流而升温,导致变频器过热,这时必须尽快使其降温以使变频器的过热保护动作消除,这个冷却过程就是变频器的过载周期。不同的变频器,其过载倍数、过载时间和过载周期均不相同,并且其过载倍数越大,过载时间越短,请见表2所示: 对于变频器所驱动的电机,按其工作情况可分为两类:长期工作制和重复短时工作制。长期工作制的电机可以按其名牌规定的数据长期运行。针对该类负载,变频器可根据电机铭牌数据进行选型,如连续运行的油泵,若其电机功率为22kW时,可选择FR-F540-22k变频器即可。重复短时工作制电机,其特点是重复性和短时性,即电机的工作时间和停歇时间交替进行,而且都比较短,二者之和,按国家规定不得超过60秒。重复短时工作制电机允许其过载且有一定的温升。此时,若根据电机铭牌数据来选择变频器,势必造成变频器的损坏。针对该类负载,变频器在参考电机铭牌数据的情况下要根据电机负载图和变频器的过载倍数、过载时间、过载周期来选型。如重复短时运行的升降机,其电机功率为18.5kW,可选择FR-A540-22k变频器。
变频调速系统的主要电磁干扰源及途径 2.1 主要电磁干扰源
电磁干扰也称电磁骚扰(EMI),是以外部噪声和无用信号在接收中所造成的电磁干扰,通常是通过电路传导和以场的形式传播的。变频器的整流桥对电网来说是非线性负载,它所产生的谐波会对同一电网的其他电子、电气设备产生谐波干扰。另外,变频器的逆变器大多采用PWM技术,当其工作于开关模式并作高速切换时,产生大量耦合性噪声。因此,变频器对系统内其他的电子、电气设备来说是一个电磁干扰源。另一方面,电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源,如各种整流设备、交直流互换设备、电子电压调整设备、非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其他设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后,若不加以处理,电网噪声就会通过电网电源电路干扰变频器。供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。其次,共模干扰通过变频器的控制信号线也会干扰变频器的正常工作。2.2 电磁干扰的途径
变频器能产生功率较大的谐波,对系统其他设备干扰性较强。其干扰途径与一般电磁干扰途径是一致的,主要分电磁辐射、传导、感应耦合。具体为:①对周围的电子、电气设备产生电磁辐射;②对直接驱动的电动机产生电磁噪声,使得电动机铁耗和铜耗增加,并传导干扰到电源,通过配电网络传导给系统其他设备;③变频器对相邻的其他线路产生感应耦合,感应出干扰电压或电流。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。下面分别加以分析。(1)电磁辐射
变频器如果不是处在一个全封闭的金属外壳内,它就可以通过空间向外辐射电磁波。其辐射场强取决于干扰源的电流强度、装置的等效辐射阻抗以及干扰源的发射频率。变频器的整流桥对电网来说是非线性负载,它所产生的谐波对接入同一电网的其它电子、电气设备产生谐波干扰。变频器的逆变桥大多采用PWM技术,当根据给定频率和幅值指令产生预期的和重复的开关模式时,其输出的电压和电流的功率谱是离散的,并且带有与开关频率相应的高次谐波群。高载波频率和场控开关器件的高速切换(dv/dt可达1kV/μs以上)所引起的辐射干扰问题相当突出。
当变频器的金属外壳带有缝隙或孔洞,则辐射强度与干扰信号的波长有关,当孔洞的大小与电磁波的波长接近时,会形成干扰辐射源向四周辐射。而辐射场中的金属物体还可能形成二次辐射。同样,变频器外部的辐射也会干扰变频器的正常工作。(2)传导
上述的电磁干扰除了通过与其相连的导线向外部发射,也可以通过阻抗耦合或接地回路耦合将干扰带入其它电路。与辐射干扰相比,其传播的路程可以很远。比较典型的传播途径是:接自工业低压网络的变频器所产生的干扰信号将沿着配电变压器进入中压网络,并沿着其它的配电变压器最终又进入民用低压配电网络,使接自民用配电母线的电气设备成为远程的受害者。(3)感应耦合
感应耦合是介于辐射与传导之间的第三条传播途径。当干扰源的频率较低时,干扰的电磁波辐射能力相当有限,而该干扰源又不直接与其它导体连接,但此时的电磁干扰能量可以通过变频器的输入、输出导线与其相邻的其他导线或导体产生感应耦合,在邻近导线或导体内感应出干扰电流或电压。感应耦合可以由导体间的电容耦合的形式出现,也可以由电感耦合的形式或电容、电感混合的形式出现,这与干扰源的频率以及与相邻导体的距离等因素有关。3 抗电磁干扰的措施
据电磁性的基本原理,形成电磁干扰(EMI)须具备电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统等三个要素。为防止干扰,可采用硬件和软件的抗干扰措施。其中,硬件抗干扰是最基本和最重要的抗干扰措施,一般从抗和防两方面入手来抑制干扰,其总原则是抑制和消除干扰源、切断干扰对系统的耦合通道、降低系统对干扰信号的敏感性。具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。(1)隔离
所谓干扰的隔离是指从电路上把干扰源和易受干扰的部分隔离开来,使它们不发生电的联系。在变频调速传动系统中,通常是在电源和放大器电路之间的电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。(2)滤波
设置滤波器的作用是为了抑制干扰信号从变频器通过电源线传导干扰到电源及电动机。为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器。为减少对电源的干扰,可在变频器输入侧设置输入滤波器。若线路中有敏感电子设备,可在电源线上设置电源噪声滤波器,以免传导干扰。(3)屏蔽
屏蔽干扰源是抑制干扰的最有效的方法。通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏。输出线最好用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路及控制回路完全分离,不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。为使屏蔽有效,屏蔽罩必须可靠接地。(4)接地
实践证明,接地往往是抑制噪声和防止干扰的重要手段。良好的接地方式可在很大程度上抑制内部噪声的耦合,防止外部干扰的侵入,提高系统的抗干扰能力。变频器的接地方式有多点接地、一点接地及经母线接地等几种形式,要根据具体情况采用,要注意不要因为接地不良而对设备产生干扰。
单点接地指在一个电路或装置中,只有一个物理点定义为接地点。在低频下的性能好;多点接地是指装置中的各个接地点都直接接到距它最近的接地点。在高频下的性能好;混合接地是根据信号频率和接地线长度,系统采用单点接地和多点接地共用的方式。变频器本身有专用接地端子PE端,从安全和降低噪声的需要出发,必须接地。既不能将地线接在电器设备的外壳上,也不能接在零线上。可用较粗的短线一端接到接地端子PE端,另一端与接地极相连,接地电阻取值<100Ω,接地线长度在20m以内,并注意合理选择接地极的位置。当系统的抗干扰能力要求较高时,为减少对电源的干扰,在电源输入端可加装电源滤波器。为抑制变频器输入侧的谐波电流,改善功率因数,可在变频器输入端加装交流电抗器,选用与否可视电源变压器与变频器容量的匹配情况及电网允许的畸变程度而定,一般情况下采用为好。为改善变频器输出电流,减少电动机噪声,可在变频器输出端加装交流电抗器。图1为一般变频调速传动系统抗干扰所采取措施。以上抗干扰措施可根据系统的抗干扰要求来合理选择使用。若系统中含控制单元如微机等,还须在软件上采取抗干扰措施。(5)正确安装
由于变频器属于精密的功率电力电子产品,其现场安装工艺的好坏也影响着变频器的正常工作。正确的安装可以确保变频器安全和无故障运行。变频器对安装环境要求较高。一般变频器使用手册规定温度范围为最低温度-10℃,最高温度不超过50℃;变频器的安装海拔高度应小于1000m,超过此规定应降容使用;变频器不能安装在经常发生振动的地方,对振动冲击较大的场合,应采用加橡胶垫等防振措施;不能安装在电磁干扰源附近;不能安装在有灰尘、腐蚀性气体等空气污染的环境;不能安装在潮湿环境中,如潮湿管道下面,应尽量采用密封柜式结构,并且要确保变频器通风畅通,确保控制柜有足够的冷却风量,其典型的损耗数一般按变频器功率的3%来计算柜中允许的温升值。安装工艺要求如下: ① 确保控制柜中的所有设备接地良好,应该使用短、粗的接地线(最好采用扁平导体或金属网,因其在高频时阻抗较低)连接到公共地线上。按国家标准规定,其接地电阻应小于4欧姆。另外与变频器相连的控制设备(如PLC或PID控制仪)要与其共地。
② 安装布线时将电源线和控制电缆分开,例如使用独立的线槽等。如果控制电路连接线必须和电源电缆交叉,应成90°交叉布线。
③ 使用屏蔽导线或双绞线连接控制电路时,确保未屏蔽之处尽可能短,条件允许时应采用电缆套管。
④ 确保控制柜中的接触器有灭弧功能,交流接触器采用R-C抑制器,也可采用压敏电阻抑制器,如果接触器是通过变频器的继电器控制的,这一点特别重要。⑤ 用屏蔽和铠装电缆作为电机接线时,要将屏蔽层双端接地。
⑥ 如果变频器运行在对噪声敏感的环境中,可以采用RFI滤波器减小来自变频器的传导和辐射干扰。为达到最优效果,滤波器与安装金属板之间应有良好的导电性。变频控制系统设计中应注意的其他问题
除了前面讨论的几点以外,在变频器控制系统设计与应用中还要注意以下几个方面的问题。
(1)在设备排列布置时,应该注意将变频器单独布置,尽量减少可能产生的电磁辐射干扰。在实际工程中,由于受到房屋面积的限制往往不可能有单独布置的位置,应尽量将容易受干扰的弱电控制设备与变频器分开,比如将动力配电柜放在变频器与控制设备之间。
(2)变频器电源输入侧可采用容量适宜的空气开关作为短路保护,但切记不可频繁操作。由于变频器内部有大电容,其放电过程较为缓慢,频繁操作将造成过电压而损坏内部元件。
(3)控制变频调速电机启/停通常由变频器自带的控制功能来实现,不要通过接触器实现启/停。否则,频繁的操作可能损坏内部元件。
(4)尽量减少变频器与控制系统不必要的连线,以避免传导干扰。除了控制系统与变频器之间必须的控制线外,其它如控制电源等应分开。由于控制系统及变频器均需要24V直流电源,而生产厂家为了节省一个直流电源,往往用一个直流电源分两路分别对两个系统供电,有时变频器会通过直流电源对控制系统产生传导干扰,所以在设计中或订货时要特别加以说明,要求用两个直流电源分别对两个系统供电。
(5)注意变频器对电网的干扰。变频器在运行时产生的高次谐波会对电网产生影响,使电网波型严重畸变,可能造成电网电压降很大、电网功率因数很低,大功率变频器应特别注意。解决的方法主要有采用无功自动补偿装置以调节功率因数,同时可以根据具体情况在变频器电源进线侧加电抗器以减少对电网产生的影响,而进线电抗器可以由变频器供应商配套提供,但在订货时要加以说明。(6)变频器柜内除本机专用的空气开关外,不宜安置其它操作性开关电器,以免开关噪声入侵变频器,造成误动作。
(7)应注意限制最低转速。在低转速时,电机噪声增大,电机冷却能力下降,若负载转矩较大或满载,可能烧毁电机。确需低速运转的高负荷变频电机,应考虑加大额定功率,或增加辅助的强风冷却。
(8)注意防止发生共振现象。由于定子电流中含有高次谐波成分,电机转矩中含有脉动分量,有可能造成电机的振动与机械振动产生共振,使设备出现故障。应在预先找到负载固有的共振频率后,利用变频器频率跳跃功能设置,躲开共振频率点。
变频器故障分类
根据变频器发生故障或损坏的特征,一般可分为两类;一种是在运行中频繁出现 的自动停机现象,并伴随着一定的故障显示代码,其处理措施可根据随机说明书 上提供的指导方法,进行处理和解决。这类故障一般是由于变频器运行参数设定不合适,或外部工况、条件不满足变频器使用要求所产生的一种保护动作现象; 另一类是由于使用环境恶劣,高温、导电粉尘引起的短路、潮湿引起的绝缘降低或击穿等突发故障(严重时,会出现打火、爆炸等异常现象)。这类故障发生后,一般会使变频器无任何显示,其处理方法是先对变频器解体检查,重点查找损 坏件,根据故障发生区,进行清理、测量、更换,然后全面测试,再恢复系统,空载试运行,观察触发回路输出侧的波形,当6组波形大小、相位差相等后,再加 载运行,达到解决故障的目的。本文主要阐述第二类故障的分析和处理方法。3.1.1 主电路故障
根据对变频器实际故障发生次数和停机时间统计,主电路的故障率占60%以上;运 行参数设定不当,导致的故障占20%左右;控制电路板出现的故障占15%;操作失 误和外部异常引起的故障占5%。从故障程度和处理困难性统计,此类故障发生必 然造成元器件的损坏和报废。是变频器维修费用的主要消耗部分。(1)整流块的损坏
变频器整流桥的损坏也是变频器的常见故障之一,早期生产的变频器整流块均以 二极管整流为主,目前部分整流块采用晶闸管的整流方式(调压调频型变频器)。中、大功率普通变频器整流模块一般为三相全波整流,承担着变频器所有输出 电能的整流,易过热,也易击穿,其损坏后一般会出现变频器不能送电、保险熔 断等现象,三相输入或输出端呈低阻值(正常时其阻值达到兆欧以上)或短路。在更换整流块时,要求其在与散热片接触面上均匀地涂上一层传热性能良好的硅导热膏,再紧固螺丝。如果没有同型号整流块时,可用同容量的其它类型的整流 块替代,其固定螺丝孔,必须重新钻孔、攻丝,再安装、接线。例如,一台80年代中期西门子生产的变频器(7.5kVA)整流模块(椭圆形)击穿后,因无同类整流块配件,采用三垦生产的同容量整流块(矩形)替代后,已运行多年,目前仍然能正常使用。(2)充电电阻易损坏
导致变频器充电电阻损坏原因一般是:如主回路接触器吸合不好时,造成通流时 间过长而烧坏;或充电电流太大而烧坏电阻;或由于重载启动时,主回路通电和 RUN信号同时接通,使充电电阻既要通过充电电流,同时又要通过负载逆变电流,故易被烧坏。其损坏的特征,一般表现为烧毁、外壳变黑、炸裂等损坏痕迹。也 可根据万用表测量其电阻(不同容量的机器,其阻值不同,可参考同一种机型的 阻值大小确定)判断。(3)逆变器模块烧坏
中、小型变频器一般用三组IGTR(大功率晶体管模块);大容量的机种均采用多 组IGTR并联,故测量检查时应分别逐一进行检测。IGTR的损坏也可引起变频器OC(+pA或+pd或+pn)保护功能动作。逆变器模块的损坏原因很多:如输出负载发生 短路;负载过大,大电流持续运行;负载波动很大,导致浪涌电流过大;冷却风 扇效果差;致使模块温度过高,导致模块烧坏、性能变差、参数变化等问题,引 起逆变器输出异常。如一台FRN22G11S-4CX变频器,输出电压三相差为106V,解体 在线检查逆变模块(6MBP100RS-120)外观,没发现异常,测量6路驱动电路也没 发现故障,将逆变模块拆下测量发现有一组模块不能正常导通,该模块参数变化 很大(与其它两组比较),更换之后,通电运行正常。又如MF-30K-380变频器在 启动时出现直流回路过压跳闸故障。这台变频器并不是每次启动时,都会过压跳 闸。检查时发现变频器在通电(控制面板上无通电显示信号)后,测得直流回路电压达到500V以上,由于该型变频器直流回路的正极串接1只SK-25接触器。在有合闸信号时经过预充电过程后吸合,故怀疑预充电回路性能不良,断开预充电回 路,情况依旧。用电容表检查滤波电容发现已失效,更换电容后,变频器工作正常。3.1.2 辅助控制电路故障
变频器驱动电路、保护信号检测及处理电路、脉冲发生及信号处理电路等控制电 路称为辅助电路。辅助电路发生故障后,其故障原因较为复杂,除固化程序丢失 或集成块损坏(这类故障处理方法一般只能采用控制板整块更换或集成块更换)外,其他故障较易判断和处理。(1)驱动电路故障
驱动电路用于驱动逆变器IGTR,也易发生故障。一般有明显的损坏痕迹,诸如器 件(电容、电阻、三极管及印刷板等)爆裂、变色、断线等异常现象,但不会出 现驱动电路全部损坏情况。处理方法一般是按照原理图,每组驱动电路逐级逆向 检查、测量、替代、比较等方法;或与另一块正品(新的)驱动板对照检查、逐 级寻找故障点。处理故障步骤:首先对整块电路板清灰除污。如发现印刷电路断线,则补线处理;查出损坏器件即更换;根据笔者实践经验分析,对怀疑的元器 件,进行测量、对比、替代等方法判断,有的器件需要离线测定。驱动电路修复 后,还要应用示波器观察各组驱动电路信号的输出波形,如果三相脉冲大小、相 位不相等,则驱动电路仍然有异常处(更换的元器件参数不匹配,也会引起这类 现象),应重复检查、处理。大功率晶体管工作的驱动电路的损坏也是导致过流 保护功能动作的原因之一。驱动电路损坏表现出来最常见的现象是缺相,或三相 输出电压不相等,三相电流不平衡等特征。(2)开关电源损坏
开关电源损坏的一个比较明显的特征就是变频器通电后无显示。如:富士G5S变频 器采用了两级开关电源,其原理是主直流回路的直流电压由500V以上降为300V左 右,然后再经过一级开关降压,电源输出5V,24V等多路电源。开关电源的损坏常 见的有开关管击穿,脉冲变压器烧坏,以及次级输出整流二极管损坏,滤波电容 使用时间过长,导致电容特性变化(容量降低或漏电电流较大),稳压能力下降,也容易引起开关电源的损坏。富士G9S则使用了一片开关电源专用的波形发生芯 片,由于受到主回路高电压的窜入,经常会导致此芯片的损坏,由于此芯片市场 很少能买到,引起的损坏较难修复。另外,变频器通电后无显示,也是较常见的故障现象之一,引起这类故障原因,多数也是由于开关电源的损坏所致。如MF系列变频器的开关电源采用的是较常见 的反激式开关电源控制方式,开关电源的输出级电路发生短路也会引起开关电源 损坏,从而导致变频器无显示。(3)反馈、检测电路故障
在使用变频器过程中,经常会碰到变频器无输出现象。驱动电路损坏、逆变模块 损坏都有可能引起变频器无输出,此外输出反馈电路出现故障也能引起此类故障 现象。有时在实际中遇到变频器有输出频率,没有输出电压(实际输出电压非常 小,可认为无输出),这时则应考虑一下是否是反馈电路出现了故障所致。在反 馈电路中用于降压的反馈电阻是较容易出现故障的元件之一;检测电路的损坏也 是导致变频器显示OC(+pA或+pd或+pn)保护功能动作的原因,检测电流的霍尔传 感器由于受温度,湿度等环境因素的影响,工作点容易发生飘移,导致OC报警。总之,变频器常见故障有过流、过压、欠压以及过热保护,并有相应的故障代码,不同的机型有不同的代码,其代码含义可查阅随机使用说明书,参考处理措施 进行解决。过流经常是由于GTR(或IGBT)功率模块的损坏而导致的,在更换功率 模块的同时,应先检查驱动电路的工作状态,以免由于驱动电路的损坏,导致GTR(或IGBT)功率模块的重复损坏;欠压故障发生的主要原因是快速熔断器或整流 模块的损坏,以及电压检测电路的损坏,电压检测采样信号是从主直流回路直接 取样,经高阻值电阻降压,并通过光耦隔离后送到CPU处理,由高低电平判断是欠 压还是过压;过热停机,多数原因是由冷却风扇散热不足引起的。如我厂铝电解 车间环境恶劣,高粉尘、高温(夏季厂房上部气温高达56℃)、高氧化铝粉尘、氟化氢腐蚀气体使多功能天车上变频器内电路板易积尘、风扇粘死、电子器件老 化迅速、GTR(或IGBT模块过热烧坏,故经常出现过热保护,特别是在夏季,这种现象更加频繁,而且模块烧坏率很高,即使进口机型(如Siemens、senken、fuji 等)情况也是如此。为解决这个问题,我们通过加大天车上使用变频器容量,才 初步降低了变频器的故障率和报废率,但效果并不理想。4 降低变频器故障和延长使用寿命的措施
根据实验证明,变频器的使用环境温度每升高10℃,则其使用寿命减少一半。为此在日常使用中,应根据变频器的实际使用环境状况和负载特点,制定出合理的检修周期和制度,在每个使用周期后,将变频器整体解体、检查、测量等全面维护一次,使故障隐患在初期被发现和处理。4.1 作好检修工作
(1)定期(根据实际环境确定其周期间隔长短)对变频器进行全面检查维护,必要时可将整流模块、逆变模块和控制柜内的线路板进行解体、检查、测量、除尘和紧固。由于变频器下进风口、上出风口常会因积尘或因积尘过多而堵塞,其本身散热量高,要求通风量大,故运行一定时间后,其电路板上(因静电作用)有积尘,须清洁和检查。
(2)对线路板、母排等维修后,要进行必要的防腐处理,涂刷绝缘漆,对已出现局部放电、拉弧的母排须去除其毛刺,并进行绝缘处理。对已绝缘击穿的绝缘柱,须清除碳化或更换。
(3)对所有接线端检查、紧固,防止松动引起严重发热现象的发生。(4)对输入(包括输出)端、整流模块、逆变模块、直流电容和快熔等器件进行全面检查、参数测定,发现烧毁或参数变化大的器件应及时更换。(5)对变频器内风扇转动状况、要经常仔细检查,断电后,用手转动风叶,观察是否卡住或缺油,以确保风扇能够正常工作。
第五篇:通信常见故障分析处理办法
通信施工中常见故障分析处理办法
—— 李 智
一、站与站之间光通道不通故障
在设备开站调试的时候,站与站之间出现会出现不通的情况。
1、利用红光笔和OTDR确认光缆是否中断,若之间有断点,根据OTDR测算的长度和隐蔽记录资料判断故障点并处理;
2、利用光源光功率计测量纤芯的衰耗是否合格,不合格的故障点多半是ODF的法兰,可能未安装好也可能是法兰本身问题;
备注:按照施工规范光缆成端后是需要进行测试的,如果施工前按照要求进行测试,能够为设备调试节省不少时间。
3、线路通但是设备还是不通,先确保物理链路不存在问题,比如尾纤、光模块(长距、短距、型号)等,咨询厂家是否需要加装光衰。不出意外,光看设备指示灯,应该是连接成功。
4、光太强,造成过载,加装光衰
注:1)建议以后ODF多采用LC适配器,减少人为接纤造成的故障.2)一对光纤两端收光要平衡,一般相差不大于2dB,同一径路的 1+1两对纤也是。
在联接光纤时要注意这点。
二、传输设备2M通道故障
2M通道故障一般为存在误码和不通。
1、误码:导致的原因较多,如焊接质量、2M头质量(氧化)、2M线长度及损伤(为其他专业提供通道的长度不宜过长,一般控制在100米以下)、接地等,在确保链路上无问题后基本能解决;
2、2M通道不通(一般为LOS告警)常见处理方式2M端口收发倒换,用户侧(这样可以判断2M线是否有故障)2M环回网管上查看告警情况,告警消失说明通道无问题,若未消失,DDF侧环回判断2M线是否有问题,2M线可能出现线序、虚焊、断裂的情况导致不通。
3、光路有光过低或过高,也会影起误码。
4、相连的设备接地没有接入位同一等电位或地线没接好也会影起误码。
三、传输设备一FE通道故障 如:
如图,在连镇进行远动调试的时候出现A站通,B站、C站(不具备调试条件)、D站调试不通的情况。
1、检查物理链路,IP设置等,确保无问题;
2、网管检查数据配置是否存在问题,根据这个组网图,通道数据是分为好几条的,中心―A站、A站―B站、B站―C站、C站―D站,网管可能是未仔细检查,未发现B站―C站这条数据未做导致不通的。这个只是列举的例子,当时站点较多,通道数量多,容易导致遗漏。
备注:这个是上海局利用传输网提供的通道,与哈局利用数据网提供方式的不一样。
3、端口不匹配,传输出的常用接口有ACCESS、TRUNK两种,ACCESS 接一台电脑,ACCESS允许一个vlan通过;TRUNK用于汇聚口接交换或路由器,TRUNK允许多个vlan通过。网管仔细检查,不能用错。(还有华为有 Hybrid混合接口用得较少)
(注:为什么,PC无法访问Server?默认情况下设置端口为trunk时,pvid自动设为1,而设为access时,pvid自动设置为vlan号。因为PC发出的数据包没有vid标签,端口1接受后,打上vid=1的标签,这样相当于PC和Server分属于不同的vlan,无法访问。)
4、vlan标识不对。
5、电路时隙用错或时隙对应错误,特别是不同厂家传输对接时容易出错,甚至出现过没有通道时隙。
6、因两个设备软件兼容性问题:造成电力、电气化SCADA通道不通问题原因:汉十SCADA组网方式为区间传输设备汇聚至相邻两个车站,由车站传输设备传至车站交换机,采用传输+数据网方式组网,因两个设备软件兼容性问题,经常性出现丢包或通道中断问题。
解决方式:厂家工作人员,按传输顺序逐一排查丢包位置,查找原因后,由厂家负责优化相关软件。
四、传输设备托管故障
在调试期间,经常会出现某站托管的情况:一般从电和光纤2方面考虑:
1、站与站之间还是属于链状,出现托管的原因2种可能都有;
2、传输网已形成环网(网管---A站---B站---C站---A站),出现B站托管的原因基本判断是断电,A站与B站和B站与C站间的光缆同时中断的可能性较小。
备注:提前判断下有利于人员安排和携带的工具。
五、ONU传输通道图及故障处理
端口状态使用“ONU与OLT设备端口状态查询”文本文档中的命令查看
---------------------------------------------↓ONU机房
ONU设备
↓ ↑
↓ ↑
传输DDF子架
↓ ↑--------环回(从传输DDF子架向传输设备端环回,可以查看DDF子架到OLT端口是否正常,正常则ONU至子架2M有问题,故障则继续向前查看)
↓ ↑
传输设备
↓ ↑--------外环回(从ONU机房传输设备上向OLT机房传输设备环回,可以查看ONU机房传输设备到OLT端口是否正常,正常则ONU至传输设备之间2M有问题,故障则继续向前查看)
----------------------------------↑ONU机房
↓ ↑
室外光路
↓ ↑
----------------------------------↓OLT机房
↓ ↑
传输设备
↓ ↑---------外环回(从OLT机房传输设备上向OLT设备环回,可以查看OLT机房传输设备到OLT端口是否正常,正常则ONU至OLT机房传输设备之间2M或传输业务有问题,故障则继续向前查看)
↓ ↑
传输DDF子架
↓ ↑--------环回(从OLT机房传输DDF子架向OLT设备环回,可以查看OLT机房传输DDF子架到OLT端口是否正常,正常则ONU至OLT机房传输DDF子架之间2M或传输业务有问题,故障则继续向前查看)
↓ ↑
OLT-DDF子架
↓ ↑--------环回(从OLT机房OLT-DDF子架向OLT设备环回,可以查看OLT机房OLT-DDF子架到OLT端口是否正常,正常则ONU至OLT机房OLT-DDF子架之间2M或传输业务有问题,故障则是OLT-DDF子架至OLT设备之间有故障需检查)
↓ ↑
↓ ↑
OLT设备
----------------------------------------------↑OLT机房
六、自动电话通话故障
以已开通的自动电话故障为例:判断自动电话故障是个别还是整栋楼。
1、整栋楼:ONU设备故障,从2方面查找原因,通道和供电,最极端(较少)的一种可能是ONU设备本身出现故障;
2、个别:一般就是缆线故障,检查卡线端子及墙壁接口等容易出现故障的地方。还有一个特别难以处理的情况,自动电话杂音多,一般就是缆线出现受潮、氧化,目前哈尔滨站采用地插的电话已出现几例了,无法解决,除非换线。
3、L3地址,V5标识电话号码不对,同时和程控交换机侧对应,七、调度电话通话质量故障
1、以中软的调度台为例:哈站改开通的机务候班楼的2M数字话机经常会出现通话质量不好、杂音较多的情况(有时候重启能恢复正常),用了多种方法来尝试解决,换线、换端口、换备用话机等方式,而且把这一情况告知厂家也未分析出原因,最后我们猜测是因为距离接触网较近(不足20米)导致的干扰。把话机换成按键式调度台得以解决此故障。
从这个故障中,以后需要注意距离接触网近的地方尽量不要使用话机,话机虽说便宜但是稳定性不如按键式调度台。
2、调度电话分机(电调)通话故障
3、调度电话供电不足故障
调度电话还有一个常见的故障:调度台与调度分系统距离较远,一般大于500米,需要加装远供模块,确保电压充足。
哈站改二候搬迁时,站台的调度电话缆线割接后,未能立刻接通,新敷设缆线也无误,但是还是忽视一个问题,新敷设的缆线与既有的缆线线径不一致,既有的粗,缆线割接后在末端测量的电压无法达到工作电压,由于线径不足采用并线解决。
八、数据网设备通信故障
数据网设备技术成熟,设备稳定,一般不会出现故障,目前遇到过的就是光模块故障。供货商所供的光模块质量不一定会好,当出现故障了更换就行(有出现过好几次,万兆的光模块)
九、GSM-R移动数字通信系统故障
1、GSM-R移动数学通信系统设备本身也不容易出现故障,一般在开通的时候经常会有驻波比告警,这个在馈缆本身质量没问题的情况下一般就重新做接头就行。
在施工过程中,需要注意几点就是防水和接地。
2、另外也有一个特别需要注意的地方开通C3的线路,2M通道需要进行接口监测,施工时不要遗漏。
G网需要4个2M通道的站点需要等2M端口明确后再成端,避免像连镇全线返工的情况。
3、天线驻波比较大,驻波比测试仪显示无问题,基站网管显示异常
问题原因:驻波比显示仪无法测量靠近仪器处的驻波异常。
解决方式:驻波比测试仪测试时,将功分器代入测量,增加测量距离,可显示机房侧馈线头故障。
4、分布式基站BUA与BUB天线位置,设计悬挂高度不明确,导致现场安装位置不满足现场覆盖要求。
问题原因:网管显示与现场设备不相符,导致多次调整天线角度。
解决方式:明确BUA及BUB天线悬挂位置及切换区。
5、过江(湖)大桥场强覆盖较差,易造成水面衍射,导致反复调整天线方位角及俯仰角。
问题原因:水面无线信号衍射,导致切换区乒乓切换。解决方式:切换区尽量避开干扰区。
十、摄像头调试故障
通信专业的摄像头在调试的过程中发现有不少网线头施工质量不好导致的摄像头不通,处理这种故障需要把安装完成的摄像头拆开处理,比较麻烦,这种麻烦在今后的施工中尽量避免,网线成端质量必须保证过硬,提高调试效率。
摄像头的命名需要和接管单位沟通好,避免重新修改。IP地址分配好不能冲突,密码设置也要统一。
十一、UPS设备调试故障
1、相序有误:哈站改通信综合楼在UPS加电时出现告警,告警信息相序有误。在告知电力专业后由于时间紧迫协调解决时间较长,通过调整线序UPS正常工作。
在施工中,电力专业经常会与我们共同确认某某站已供电,需要注意的是在确认的时候相序也要确认,确保通信设备正常加电,较少麻烦。
2、UPS设备调试时一定要有(设置)断电又以来电后自动重起功能,不管接没接电池都要有这功能(招标时要求)
十二、各种通道调试不通故障
信号、电力、信息等其他专业通道在调试经常会出现不通的情况,遇到此类问题无非就是网管数据不对或者物理链路的问题。
在处理这类问题,在确保尾纤、缆线、端口、物理接口等无误后与网管沟通一般都能解决。
在施工过程中,故障的发生一般是施工、材料设备质量引起的,因此只有把好质量关才能减少故障的发生,把一些重点、注意点提前注意了,才能避免不少故障,减少人工材料成本,也能为开通节省不少时间。
在设备招标时对ODF、DDF、EDF、VDF(MDF)的质量一定要注意不能图价低购买质量差的,对ODF及光中间配线柜强烈建议采用LC适配器,减少人为接纤造成的故障.。特别是光衰耗不平衡故障由FC适配器造成的太多。
2021年6月16日