扬州五年级数学思维训练10

时间:2019-05-12 20:50:54下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《扬州五年级数学思维训练10》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《扬州五年级数学思维训练10》。

第一篇:扬州五年级数学思维训练10

五年级数学思维训练

(十)班级

一、填空。

1、一个最简假分数,分子、分母的积是42,这个分数可能是()。一个最简假分数,分子、分母的和是12,这个分数可能是()。

2、把下列分数化成最简分数。

******7963、分子是12的最简假分数一共有()个,最小的是()。

4、分数单位是1的所有的最简真分数的和是()。85、一个最简分数的分子和分母的积是35,这个最简分数可能是()。

6、57的分母加上8,要要使分数的大小不变,分子应加上();的分母减去6,81

211,梨还剩下,()卖出的箱数多。54要使分数的大小不变,分子应减去()。

7、苹果和梨各有200箱,卖出一些后,苹果还剩下

8、有分母是9的真分数、假分数、带分数各一个,从小到大排列这三个分数,相邻两个分数只相差一个分数单位。这三个分数分别是()、()、()。

9、甲、乙两人参加冬季长跑比赛,30分钟后,甲跑了全程的跑得快。

10、把6张同样大小的纸重叠在一起,平均分成7分,每份是6张纸的纸的1113,乙跑了全程的,()1520,每份是一张。每份是()张纸。1。

211、下面的分数,()个最接近0,()最接近1,()个最接近

2***11071

53112、实验小学五(6)班同学的参加数学趣小组,参加书法兴趣小组的同学比全班同学的 86

多3人,这个班级有()人,参加书法兴趣小组的有()人。

13、下列分数是按一定规律排列的,请在括号里填上适当的数。1111、、()…………,这样写下去,就越来越接近()。2486

4999999(2)、、、()……,这样写下去,就越来越接近()。101001000(1)

14、五年级(3)班男生人数是女生人数的1男生人数的3倍,男生人数是女生的,女生人数是4,男生人数比女生多,女生人数比男生人数少。

15、一辆汽车行驶25千米用了15分钟。这辆汽车平均每分钟行()千米。行1千米

要用()分钟。

16、在一个正方体的六个面上两面涂上红色,四面涂上黄色,把正方体任意向上抛若干次。

红色一面向上的次数大约占总次数的,黄色向上的次数大约占总次数的。

17、在中,□能填的整数有()。

二、挑战自我。

1、一个分数,分子分母的和是105,约分后是

2、一个分数的分子减1,这个分数得

少?

3、一个最简真分数,分子与分母的和是17,分子与分母的最小公倍数是42,这个最简真分数是多少?

4、一个分数的分子不变,分母扩大5倍,分数的大小有什么变化?如果这个分数的分母不变,分子缩小7倍,这个分数的大小有什么变化?

5、3,原来的分数是多少? 411,如果分母减1,这个分数得,原来的分数是多54139的分子和分母同时加上一个什么数后约分得? 2010

三、综合提高。

3x

11、如果是一个真分数,那么x可能是哪些整数? 242、请你写出由2、3、5、7四个数可组成的所有真分数和假分数。

第二篇:数学思维训练

上楼下楼的过程中,也蕴藏着许多数学问题,今天我们就来学习楼梯中的数学,日常生活中与爬楼梯类似的问题还有锯木头的段数问题,敲钟遇到的时间问题等,都是比较特殊的问题。

1、爬楼梯遇到的层次问题,主要明白几楼与几层楼梯是不同的,从底楼起,楼数比楼梯层数多1。即:楼数=楼梯层数+1

楼梯层数=楼数-1

2、锯木头的段数问题,主要明白锯成木头的段数比锯木头的次数多1。

即:段数=次数+1

次数=段数-1

3、敲钟遇到的时间问题,主要明白敲的次数比钟声之间的间隔多1。即:次数=间隔数+1

间隔数=次数-1 解决这类应用题,先要考虑以上提到的这些差别,再选择恰当的解题方法。

1、聪聪住的这幢楼共有6层,每层楼梯20级,她家住在五楼,聪聪每次回家要走多少级台阶才能到自己住的那一层?

分析与解答:聪聪住在五楼,从底楼走到五楼其实走了5-1=4(层)楼梯。每层楼梯20级,要求从底楼走到五楼的台阶数,其实就是求4个20是多少。

(1)

聪聪从底楼到五楼要走几层楼梯?

(2)

聪聪从底楼到五楼要走几级楼梯?

答:聪聪每次回家要走

级台阶才能到自己住的那一层。试一试1:冬冬住在11楼,他他发现第8层到第9层有25级台阶,从底楼到冬冬家一共有多少级台阶?

2、小红家住六楼,她从底楼走到二楼用1分钟,那么她从底楼走到六楼要用多少分钟?

分析与解答:从底楼到六楼其实爬了6-1=5(层)楼梯,小红从底楼到二楼用了1分钟,即走一层楼梯要用1分钟,所以从底楼到六楼要用1×5=5(分)。

(1)

从底楼到六楼要爬几层楼梯?

(2)

从底楼到六楼要爬几分钟?

答:她从底楼走到六楼要用

分钟。

试一试2:许亮家住五楼,他从四楼到五楼需要30秒,他从底楼走到五楼要多少秒?

例3:把一根粗细均匀的木料锯成5段,每锯一次要用3分钟,一共要用多少分钟?

分析与解答:要把木料锯成5段,其实只需要锯5-1=4次,每锯一次要3分钟,要求一共用了多少分钟,就是求4个3分钟是多少?(1)

把木料锯成5段,要锯几次?

(2)

一共要锯多少分钟?

答:一共要用

分钟。

试一试3:把一根16米长的钢管锯成4段,每锯一次用6分钟,一共需要几分钟?

例4:时钟3点钟敲3下,6秒钟敲完;6点钟敲6下,几秒钟敲完? 分析与解答:时钟敲3下,中间有2个间隔,2个间隔用了6秒,由此可知每个间隔用了

6÷2=3秒;时钟敲6下,中间有6-1=5个间隔,所用时间就是5个3秒。

(1)

敲3下钟声之间有几个间隔?

(2)

每个间隔用多少秒?

(3)

敲6下钟声之间有几个间隔?

(4)

敲6下钟声用了多少时间?

答:

秒钟敲完。

试一试4:时钟12秒钟敲了7下,敲11下需要几秒?

例5:六一儿童节同学们参加队列表演,有32人参加,每4人一行,前后两行间隔2米,这个队列全长多少米? 解:(1)可以站几行?

(2)有多少个间隔?

(3)队列有多长?

答:这个队列全长

米。

试一试5:学校组织同学去看电影,三(2)班40个同学排成两路纵队,前后相邻两个同学之间的距离是1米。三(2)班的队伍长多少米?

例6:某工厂厂庆,在一条长40米的大路两侧插彩旗,从起点到终点共插了22面,相邻两面彩旗之间的距离相等,相邻两面彩旗之间相距多少米?

解:(1)每侧有多少面彩旗?

(2)每侧有多少个间隔?

(3)相邻两面彩旗之间相距多少米?

答:相邻两面彩旗之间相距

米。

试一试6:在学校一条长24米的走廊两边摆菊花,从起点到终点共摆了18盆,相邻两盆之间的距离相等,相邻两盆之间相距多少米? 练习:

1、乐乐家住四楼,每次回家要走72级台阶,如果每层台阶一样多,每个楼层有多少个台阶?

2、王阿姨到一幢十层大楼的第八层办事,不巧停电,电梯停开,她从一楼走到四楼用了48秒,用同样的速度走到8楼,需要多少秒?

3、把一根钢管锯成小段,一共花了25分钟,已知每锯开一段需要5分钟,这根钢管锯成了几段?

4、时钟4点钟敲4下,9秒钟敲完,8点钟敲8下,几秒钟敲完?

5、同学们在两幢楼房间栽树,每隔5米栽一棵,一共栽了8棵,这两幢楼房相隔多少米?

6、李强用同样的速度在公园的林荫道上散步,他从第1棵树走到第10棵树用了9分钟,当他走了20分钟,他应该走到第几棵树?(相邻两棵树之间的距离相等)如果路的一边从头到尾种了50棵树,他从头到尾共需要走多少分钟?

7*、云和小亮两人比赛爬楼梯,小云跑到3楼时,小亮恰好跑到2楼,照这样计算,小云跑到9楼时,小亮跑到几楼?

试一试5:猴山上有大猴子22只,小猴子的只数是大猴子的4倍,中猴子有43只,三种猴子一共有多少只?

例6:强强去外婆家,如果他来回都步行要用90分钟。如果他去时步行,回来时乘车一共用了58分。他回来时乘车要用多少分钟? 分析与解答:根据来回都步行要用90分钟可以求出他去时步行用的时间,又知道他去时步行,回来时乘车一共用了58分,可以求出他回来时乘车要用多少分钟。(1)他去时步行用了多少时间?

(2)回来时乘车用多少分钟?

综合算式:

答:他回来时乘车要用

分钟。

试一试6:邮递员叔叔去某地送信,来回都骑车要用48分钟,如果他去时骑车,回来时步行,一共要用95分钟。他回来时步行要用多少分钟? 练习:

1、在学雷锋活动,三年级同学做好事73件,五年级同学做好事的件数是三年级的3倍。两个年级共做好事多少件?

2、爸爸今年30岁,是小明年龄的5倍,爸爸今年比小明大多少岁?

3、花圃里有48盆鸡冠花,是郁金香的4倍,郁金香的盆数比月季花少18盆,花圃里有多少盆月季花?

4、书架上摆数三层图书,第一层有32本,第二层有28本,第二层和第三层的总本数是第一层的2倍,第三层有多少本图书?

5、学校体育器材室足球84只,是排球只数的2倍,篮球有56只,三种球一共有多少只?

6、李老师上班时坐车,下班时步行,在路上共用50分钟,如果往返都步行要用80分钟。如果往返都坐车,只需多少分钟?

7、爸爸共买回56个鸡蛋,过了几天后,吃掉的鸡蛋是还剩的6倍,还剩多少个鸡蛋?

学 会 倒 着 想

例1:一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。问长到4厘米时要用多少天?

分析与解答:由题中条件可知:每天毛毛虫的长度都是前一天的2倍,倒着想,就是前一天的长度是后一天的一半。我们就从第16天长到16厘米一天一天往前推算:

(1)第15天长到多少厘米?

(2)第14天长到多少厘米?

答:长到4厘米时要用

天。

试一试1:一条小青虫由幼虫长到成虫,每天长一倍,20天能长到20厘米。问长到5厘米时要用多少天? 例2:一个数减16加上240,再除以7得40,求这个数是多少? 分析与解答:我们先理清题中的顺序:如下:

用倒着想的方法思考,就是从原来运算的逆运算一步一步地推想。最后是除以7得40,如果不除以7,那应该是40×7=280;如果不加上240,那应该是280-240=40;如果不减去16,那应该是16+40=56。

答:这个数是。

试一试2:一个数如果加上5,乘5,减去5,再除以5,结果还是5。这个数是多少?

例3:小丽在做一道加法计算题时,由于粗心,把个位上的4看作7,十位上的8看作2,结果和是306。正确的答案应该是多少? 分析与解答:要求正确的答案,就要知道两个正确的加数。看错的加数是27,因此得到错误的和是306。我们倒着想,根据逆运算可以得到一个没有看错的加数是306-27=279。题中已知一个正确的加数是84,所以,正确的和应该是:

(1)

(2)

答:正确的答案应该是。

试一试3:小明在做一道加法计算题时,将个位上的5看作9,把十位上的8看作3,结果所得的和是123,正确的答案应该是多少? 例4:一根铁丝剪去一半,再减去余下的一半,还剩14分米,这根铁丝原来长多少分米?

分析与解答:根据题意,画出线段图:

从上面的线段图可以看出,剩下的14分米和余下的一半同样多。那么,原来铁丝长的一半就是14×2=28分米。所以这根铁丝原来长就是:

答:这根铁丝原来长

米。

试一试4:小华用压岁钱的一半买了一只新书包,又用余下的一半买了几本文艺书,还剩15元,小华的压岁钱一共有多少元? 例5:小红、小丽、小华三人分苹果,小红得的比总数的一半多1个,小丽得的比剩下的一半多1个,小华得10个。原来有多少个苹果? 分析与解答:根据题意,画线段图:

为什么小华得10个,这是因为小丽得到剩下的一半多1个,如果小丽只得了剩下的一半,那么小华应该得到10+1=11个,也就是剩下的另一半,这样也就说明了小丽得到了同样多的11个,我们由此可以算出小红取去后剩下的苹果数是11×2=22个。同样,如果小红得的是总数的一半,那么剩下的应该是22+1=23个。显然,总数的另一半也就是23个,那么苹果总数应该是23×2=46个。(1)如果小丽只得剩下的一半,那么小华该得多少个?

(2)小红取了后,还剩多少个苹果?

(3)如果小红只得总数的一半,应剩多少个?

(4)原来有多少个苹果?

答:原来有

个苹果。

试一试5:小明看一本故事书,第一天看了这本书的一半又10页,第二天看了余下的一半又10页,还剩下15页没看。这本故事书一共有多少页?

例6:三只笼子里共养24只兔子,如果从第一只笼子里取出4只放到第二只笼里,再从第二只笼里取出3只放到第三只笼里,那么三只笼里的兔子就一样多。原来三只笼里各养了多少只兔子?

分析与解答:根据题意可知,第一只、第三只笼子里的兔子只发生了一次变化,而第二只笼里的兔子只数发生了两次变化;三只笼里的兔子不管怎样移动,兔子的总只数是不变的,我们从变化的结果“三只笼里的兔子就一样多”可知,最后每只笼子的兔子都是24÷3=8只。再对照条件,把各笼里的兔子还原,就得到了原来各养了多少只。(1)三只笼子最后各有多少只兔子?

(2)第一只笼子原来有多少只兔子?

(3)第二只笼子原来有多少只兔子?

(4)第三只笼子原来有多少只兔子?

答:第一只笼子原来有

只兔子;第二只笼子原来有

只兔子;第三只笼子原来有 只兔子。

试一试6:小青、小白、小华都喜爱画片,如果小青给小白11张画片,小白给小华20张画片,小华给小青5张画片后,他们三人的画片张数就同样多。已知他们三人共有画片150张,他们三人原来各有多少张画片? 练习:

1、有种水草每天能长一倍,8天能长满一池塘。长满半池塘要几天?

2、一个数的5倍加上6减去10再除以9,得4。这个数是多少?

3、小马虎在做一道减法题时,把减数十位上的8错看成5,个位上的7错看成1,结果求出的错误的差是236。正确的差是多少?

4、某人乘火车从甲地到乙地,行了全程的一半时开始睡觉,当他醒来时发现火车又行了睡时剩下路程的一半,这时离乙地还有100千米。甲乙两地相距多少千米?

5、妈妈从副食店买回一些鸡蛋。第一天吃了全部的一半又一个,第二天吃了余下的一半又2个,第三天吃了3个,恰好吃完。妈妈买回多少个鸡蛋?

6、有甲、乙、丙、丁四篮苹果,如果从甲篮拿出10个给乙篮,从乙篮拿出12个给丙篮,从丙篮拿出20个给丁篮,从丁篮拿出14个甲篮后,四篮苹果的个数相等,已知四篮共有苹果120个。原来四篮各有多少个苹果?

加减法应用题

用数学方法解决人们生活和工作中的实际问题就产生了通常所说的“应用题”。

应用题由已知的“条件”和未知的“问题”两部分构成,而且给出的已知条件应能保证求出未知的问题。

这一讲主要介绍利用加、减法解答的简单应用题。

例1 小玲家养了46 只鸭子,24 只鸡,养的鸡和鹅的总只数比养的鸭多5 只。小玲家养了多少只鹅? 解:将已知条件表示为下图:

表示为算式是:24+?=46+5。由此可求得养鹅(46+5)-24=27(只)。答:养鹅27 只。

若例1 中鸡和鹅的总数比鸭少5 只(其它不变),则已知条件可表示为下图,表示为算式是:24+?+5=46。由此可求得养鹅46-5-24=17(只)。例2 一个筐里装着52 个苹果,另一个筐里装着一些梨。如果从梨筐里取走18 个梨,那么梨就比苹果少12 个。原来梨筐里有多少个梨? 分析:根据已知条件,将各种数量关系表示为下图。

有几种思考方法:

(1)根据取走18 个梨后,梨比苹果少12 个,先求出梨筐里现有梨52-12=40(个),再求出原有梨(52-12)+18=58(个)。

(2)根据取走18 个梨后梨比苹果少12 个,我们设想“少取12 个”梨,则现有的梨和苹果一样多,都是52 个。这样就可先求出原有梨比苹果多18-12=6(个),再求出原有梨52+(18-12)=58(个)。

(3)根据取走18 个梨后梨比苹果少12 个,我们设想不取走梨,只在苹果筐里加入18 个苹果,这时有苹果52+18=70(个)。

这样一来,现有苹果就比原来的梨多了12 个(见下图)。由此可求出原有梨(52+18)-12=58(个)。

由上面三种不同角度的分析,得到如下三种解法。解法 1:(52-12)+18=58(个)。解法 2:52+(18-12)=58(个)。解法 3:(52+18)-12=58(个)。答:原来梨筐中有58 个梨。

例3 某校三年级一班为欢迎“手拉手”小朋友们的到来,买了若干糖果。已知水果糖比小白兔软糖多15 块,巧克力糖比水果糖多28 块。又知巧克力糖的块数恰好是小白兔软糖块数的2 倍。三年级一班共买了多少块糖果?

分析与解:只要求出某一种糖的块数,就可以根据已知条件得到其它两种糖的块数,总共买多少就可求出。先求出哪一种糖的块数最简便呢?我们先把已知条件表示为下图。

由上图可求出,小白兔软糖块数=15+28=43(块),水果糖块数=43+15=58(块),巧克力糖块数=43×2=86(块)。糖果总数=43+58+86=187(块)。答:共买了187 块糖果。

例4 一口枯井深230 厘米,一只蜗牛要从井底爬到井口处。它每天白天向上爬110 厘米,而夜晚却要向下滑70 厘米。这只蜗牛哪一个白天才能爬出井口?

分析与解:因蜗牛最后一个白天要向上爬110 厘米,井深230 厘米减去这110 厘米后(等于120 厘米),就是蜗牛前几天一共要向上爬的路程。因为蜗牛白天向上爬110 厘米,而夜晚又向下滑70 厘米,所以它每天向上爬110-70=40(厘米)。

由于120÷40=3,所以,120 厘米是蜗牛前3 天一共爬的。故第4 个白天蜗牛才能爬到井口。

若将例4 中枯井深改为240 厘米,其它数字不变,这只蜗牛在哪个白天才能爬出井口?(第5 个白天)练习: 1.甲、乙、丙三人原各有桃子若干个。甲给乙2 个,乙给丙3 个,丙又给甲5 个后,三人都有桃子9 个。甲、乙、丙三人原来各有桃子多少个?

2.三座桥,第一座长287 米,第二座比第一座长85 米,第三座比第一座与第二座的总长短142 米。第三座桥长多少米?

3.(1)幼儿园小班有巧克力糖40 块,还有一些奶糖。分给小朋友奶糖24块后,奶糖就比巧克力糖少了10 块。原有奶糖多少块?(2)幼儿园中班有巧克力糖48 块,还有一些奶糖。分给小朋友奶糖26块后,奶糖就只比巧克力糖多18 块。原有奶糖多少块? 4.一桶柴油连桶称重120 千克,用去一半柴油后,连桶称还重65 千克。这桶里有多少千克柴油?空桶重多少?

5.一只蜗牛从一个枯水井底面向井口处爬,白天向上爬110 厘米,而夜晚向下滑40 厘米,第5 天白天结束时,蜗牛到达井口处。这个枯水井有多深?若第5 天白天爬到井口处,这口井至少有多少厘米深?(厘米以下的长度不计)6.在一条直线上,A 点在B 点的左边20 毫米处,C 点在D 点左边50 毫米处,D 点在B 点右边40 毫米处。写出这四点从左到右的次序。

7.(1)五个不同的数的和为172,这些数中最小的数为32,最大的数可以是多少?

(2)六个不同的数的和为356,这些数中,最大的是68,最小的数可以是多少?

第三篇:五年级数学思维训练100题及答案(吐血推荐)(范文)

五年级数学思维训练100题及答案(吐血推荐)

1.765×213÷27+765×327÷27

解:原式=765÷27×(213+327)= 765÷27×540=765×20=15300

2.(9999+9997+„+9001)-(1+3+„+999)

解:原式=(9999-999)+(9997-997)+(9995-995)+„„+(9001-1)

=9000+9000+„„.+9000(500个9000)

=4500000

3.19981999×19991998-19981998×19991999

解:(19981998+1)×19991998-19981998×19991999

=19981998×19991998-19981998×19991999+19991998

=19991998-19981998

=10000

4.(873×477-198)÷(476×874+199)

解:873×477-198=476×874+199

因此原式=

15.2000×1999-1999×1998+1998×1997-1997×1996+„+2×1

解:原式=1999×(2000-1998)+1997×(1998-1996)+„

+3×(4-2)+2×1

=(1999+1997+„+3+1)×2=2000000。

6.297+293+289+„+209

解:(209+297)*23/2=5819

7.计算:

解:原式=(3/2)*(4/3)*(5/4)*„*(100/99)*(1/2)*(2/3)*(3/4)*„*(98/99)

=50*(1/99)=50/99

8.解:原式=(1*2*3)/(2*3*4)=1/

49.有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。

解: 7*18-6*19=126-114=1

26*19-5*20=114-100=14

去掉的两个数是12和14它们的乘积是12*14=168

10.有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。

解:28×3+33×5-30×7=39。

11.有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数?

解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。

12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?

解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。

13.妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)

解:每20天去9次,9÷20×7=3.15(次)。

14.乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。

解:以甲数为7份,则乙、丙两数共13×2=26(份)

所以甲乙丙的平均数是(26+7)/3=11(份)

因此甲乙丙三数的平均数与甲数之比是11:7。

15.五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。糊得最快的同学最多糊了多少个?

解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人)。因此糊得最快的同学最多糊了

74×6-70×5=94(个)。

16.甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。问:甲、乙两班谁将获胜?

解:快速行走的路程越长,所用时间越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。

17.轮船从A城到B城需行3天,而从B城到A城需行4天。从A城放一个无动力的木筏,它漂到B城需多少天?

解:轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天。

18.小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?

解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。也就是说,小强第二次比第一次少走4分。由

(70×4)÷(90-70)=14(分)

可知,小强第二次走了14分,推知第一次走了18分,两人的家相距

来源:()-五年级数学思维训练100题及答案

(一)_花未眠_新浪博客

(52+70)×18=2196(米)。

19.小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。甲、乙两地相距多少千米?

解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。所以甲、乙两地相距6×4=24(千米)

20.甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。求甲原来的速度。

解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。

设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。

21.甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?

解:9∶24。解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站。乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24。

22.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?

解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为1

123.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。问:两人每秒各跑多少米?

解:甲乙速度差为10/5=

2速度比为(4+2):4=6:

4所以甲每秒跑6米,乙每秒跑4米。

24.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。问:

(1)A,B相距多少米?

(2)如果丙从A跑到B用24秒,那么甲的速度是多少?

解:解:(1)乙跑最后20米时,丙跑了40-24=16(米),丙的速度

25.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?

解:设车速为a,小光的速度为b,则小明骑车的速度为3b。根据追及问题“追及时间×速度差=追及距离”,可列方程

10(a-b)=20(a-3b),解得a=5b,即车速是小光速度的5倍。小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车。

26.一只野兔逃出80步后猎狗才追它,野兔跑 8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。猎狗至少要跑多少步才能追上野兔?

解:狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间。所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。

27.甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。问:

(1)火车速度是甲的速度的几倍?

(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?

解:(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的 是行人速度的11倍;

(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒)。

28.辆车从甲地开往乙地,如果把车速提高20%,那么可以比原定时间提前1时到达;如果以原速行驶100千米后再将车速提高30%,那么也比原定时间提前1时到达。求甲、乙两地的距离。

29.完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天。问:甲、乙单独干这件工作各需多少天?

解:甲需要(7*3-5)/2=8(天)

乙需要(6*7-2*5)/2=16(天)

30.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水?

31.小松读一本书,已读与未读的页数之比是3∶4,后来又读了33页,已读与未读的页数之比变为5∶3。这本书共有多少页?

解:开始读了3/7 后来总共读了5/8

33/(5/8-3/7)=33/(11/56)=56*3=168页

32.一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成。如果甲做3时后由乙接着做,那么还需多少时间才能完成?

解:甲做2小时的等于乙做6小时的,所以乙单独做需要

6*3+12=30(小时)甲单独做需要10小时

因此乙还需要(1-3/10)/(1/30)=21天才可以完成。

33.有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件。这批零件共有多少个?

解:甲和乙的工作时间比为4:5,所以工作效率比是5:

4工作量的比也5:4,把甲做的看作5份,乙做的看作4份

那么甲比乙多1份,就是20个。因此9份就是180个

所以这批零件共180个

34.挖一条水渠,甲、乙两队合挖要6天完成。甲队先挖3天,乙队接着

解:根据条件,甲挖6天乙挖2天可挖这条水渠的3/5

所以乙挖4天能挖2/5

因此乙1天能挖1/10,即乙单独挖需要10天。

甲单独挖需要1/(1/6-1/10)=15天。

第四篇:五年级数学思维训练经典试题:投飞镖

编者小语:下面这道试题是根据题型的变化总结出来的,非常适合五年级的同学参考练习,希望对大家有所帮助!甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?解:甲得分:(152+16)2=84分 乙:152-84=68分 设甲中x次 10x-6(10-x)=84 10x-60+6x=84 16x=144 x=9 设乙中y次 10y-6(10-y)=68 16y=128 y=8 答:甲中9次,乙8次。

第五篇:小学五年级数学思维训练教学总结

数学教学过程的基本目标是促进学生的发展,按照新课标的基本理念,它不只是让学生获得必要的数学 知识,技能还应当包括在启迪思维、解决问题,情感与态度等方面的发展,那么思维训练过程式一个什么样的过程呢? 思维训练是训练人脑对客观事物的本质特征和内在联系尽快正确作出间接的和概括的反映的过程,小学数学思维训练是在小学数学教学过程中教师有目的、有计划地引导学生主动参与思维活动,培养学生思维兴趣、品质和能力的过程;这一过程一般包括训练准备、训练实施、效果测评三个过程。

一、训练准备过程

教师要想上好思维训练课,开展好思维训练必须做好充分准备,这样,才能确保训练目的明确,方法得当,有序高效在这一过程有两项主要任务:

1、拟定好思维计划,这时搞好思维训练的前提,在定计划要依据大纲或课标要求紧扣教材知识和内容、训练目的和要求、训练形式和方法。

2、激发学生的思维兴趣,引起学生主动思考、敢想敢说。如果学生不愿意思考问题,不敢发表意见,则思维训练难于进行,怎样激发学生的思维兴趣呢?

①是建立教师与学生、学生与学生之间的伙伴关系;

②是说出有思考价值的问题;

③是让学生从新旧知识矛盾中发现问题;

④是创设争辩氛围;

⑤是利用游戏、演示、操作等激发思维兴趣。

二、训练实施过程

在这一过程,首先是训练指导,即结合某单元或章节的新知识内容,说明重点训练项目、程序和方法、使学生明确训练目的和要求,从而自觉参与思维训练。其次是按计划分课时开展训练,注意排除学生的思维障碍。在新课学习阶段以归纳推理训练为主,在练习巩固阶段以演绎推理训练为主;但是,要注意求异思维训练。数学课堂教学是思维训练的主阵地,如何搞好课堂教学中的思维训练呢?

1.创设思维情景激发思维。对学生进行思维训练,首先要创设一定的思维情景,激发学生思维动机,将学生的思维需要转化为思维活动

2.安排适当活动,激活思维。在学生的思维被激发后,他们会主动参与思维活动,在次基础上,还应安排适当活动激活思维,使思维优质高效。

①让学生质疑、问难。鼓励学生大胆质疑、敢于提问,是激活思维的有效方法之一,质疑问难的学习活动可以活跃气氛,促使全体学生围绕一定的问题展开思维、交流信息、教师正好因势利导参与研讨。

②让学生自学尝试。自学尝试是一种自主探究新知的过程,不仅可以激活思维,而且可以培养自学能力。

③让学生探究研讨。例如:教学运算定律让学生通过题组计算自己找规律,做结论。

④让学生判断推理。应用判断推理辩析和强化概念的本质属性,也是激活思维的有效方法。例如:让学生运用除法算式判断哪个数能被哪个数整除,并说明理由,可以激活学生的演绎推理。

3.多种形式鼓励激励思维。小学生的思维积极性需要不断被激励,如何激励学生思维呢?

三、效果测评

1、报告结果,自我激励。即让学生当众报告自己的思维过程和结果,如让学生说一说是怎样想的把自己得的结论说给大家听。

2、留下悬念,设问激励。如在数学课结尾时留下学生想解决但未解决的问题,让学生带着。

下载扬州五年级数学思维训练10word格式文档
下载扬州五年级数学思维训练10.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学思维训练计划

    六年级第一学期思维训练课计划 指导思想:数学思维训练是一种学科思维训练,是结合日常的数学教学活动,以数学知识与技能为载体,根据数学思维发展的规律和一般思维训练的原理,针对......

    三年级数学思维训练

    三年级数学思维训练1、有48个学生参加三项体育比赛,但参加的每项活动的人数不一样,而人数都有一个数字 “6”,参加三项体育比赛的各有几人? 2、龙龙和亮亮去公园玩,想买门票,但钱......

    二年级数学思维训练)

    二年级数学思维训练题(1) 1.小明今年6岁,小强今年4岁,2年后,小明比小强大几岁? 2.同学们排队做操,小明前面有4个人,后面有4个人,这一队一共有多少人? 3.有一本书,小华第一天看了2页,以后每......

    五年级数学思维训练100题及解答(共五则范文)

    五年级数学思维训练100题及解答(1—5) 五年级数学思维训练100题及解答(6—10) 五年级数学思维训练100题及解答(11—15) 五年级数学思维训练100题及解答(16—20) 五年级数学思维训练1......

    苏教版五年级下册思维训练

    苏教版五年级下册思维训练一、方程问题(1)一、学一学例题1:在下面两个□里填入相同的数,使等式成立。24×□-□×15=18[思路点拨]算式中的□都用x代替,求出x的值,就是方框中应填的......

    数学思维训练社团活动计划

    数学思维训练社团活动计划 一、教学目的任务: 1.能用有余数的除法的计算方法去填写算式中所缺的数。 2.培养学生认真观察能力和珍惜时间的意义。 3.培养学生思维能力和细心......

    数学思维拓展训练(十一)

    数学思维拓展训练(十一) (2006年5月) 姓名全卷120分,每空10分 ⑴ 47.25×12.4+811×3.1= ⑵ 有分别相同的5个○和8个□,请你联系学过的知识,至少用3种说法表明两种图形的倍数关系。......

    加强中学生的数学思维训练

    加强中学生的数学思维训练 刘昱 提高学生的思维能力,不仅是数学教学的根本,同时也是素质教育、创新教育的要义之所在。教师在中学数学教学中,主要是培养学生的形象思维和抽......