立体几何判定定理及性质定理汇总

时间:2019-05-12 17:22:26下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《立体几何判定定理及性质定理汇总》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《立体几何判定定理及性质定理汇总》。

第一篇:立体几何判定定理及性质定理汇总

立体几何判定定理及性质定理汇总

一线面平行

线面平行判定定理

平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。线面平行性质定理

一条直线与一个平面平行,则过这条直线的任意平面与此平面的交线与该直线平行. 二面面平行

面面平行判定定理

一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 推论 一个平面内两条相交直线与另一个平面内的两条直线分别平行,则这两个平面平行.

面面平行性质定理

如果两个平行平面同时和第三个平面相交,则它们的交线平行.

三线面垂直

判定定理

一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面平行. 线面垂直性质定理1

如果一条直线垂直于一个平面,则它垂直于平面内的所有直线.

线面垂直性质定理2

垂直于同一个平面的两条直线平行.

四面面垂直

面面垂直判定定理

一个平面过另一个平面的垂线,则这两个平面垂直.

面面垂直性质定理1

两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.

面面垂直性质定理2

两个平面垂直,过一个平面内一点与另一个平面垂直的直线在该平面内.

第二篇:三角形性质和判定定理

等腰三角形:

定义:有两条边相等的三角形是等腰三角形。在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。性质:

1.等腰三角形的两条腰相等; 2.等腰三角形的两个底角相等; 3.4.等腰三角形顶角的平分线、底边上的中线、底边上的高重合,它们所在的直线都是等腰三角形的对称轴。判定:

1.有两条边相等的三角形是等腰三角形;

2.如果一个三角形有两个角相等,那么这两个角所对的边也相等。

等边三角形:

定义:三边都相等的三角形是等边三角形,也叫正三 角形。性质:

1.的垂直平分线都是它的对称轴;

2.60°。判定:

1.三条边都相等的三角形是等边三角形; 2.有一个角是60°的等腰三角形是等边三角形; 3.有两个角是60°的三角形是等边三角形。

直角三角形:

定义:有一个内角是直角的三角形叫做直角三角形。其中,构成直角的两边叫做直角边,直角边所对的边叫做斜边。性质:

1.直角三角形的两个余角互余;

2.直角三角形斜边上的中线等于斜边的一半;

3.直角三角形中30°角所对的直角边等于斜边的一半;4.a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 判定:

1.有一个角是直角的三角形是直角三角形; 2..有两个角互余的三角形是直角三角形;

3.如果一个三角形一条边上的中线等于这条边的的一半,那么这个三角形是直角三角形;

4.如果三角形的三边长a、b、c满足于a^2+b^2=c^2,那么这个三角形是直角三角形。

角平分线定理:在角的平分线上的点到这个角的两边的距离相等

逆定理:到一个角的两边的距离相同的点,在这个角的平分线上

中垂线定理:线段垂直平分线上的点到这条线段两个

端点的距离相等

逆定理:到一条线段两个端点距离相等的点,在这

条线段的垂直平分线上定理三角形两边的和大于第三边2 推论三角形两边的差小于第三边

5外角2三角形的一个外角大于任何一个和它不相

邻的内角三角形内角和定理三角形三个内角的和等于180° 4外角1三角形的一个外角等于和它不相邻的两个

内角的和

全等的判定:

6边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

7角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

8推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

9边边边公理(SSS)有三边对应相等的两个三角形

全等

10斜边、直角边公理(HL)有斜边和一条直角边对应

相等的两个直角三角形全等

第三篇:面面平行的判定和性质定理

编写人:邵凤颖2011-6-14晚板书上交日期:2011-6-15早

平面与平面平行的判定及性质定理 学习目标:

1、判定定理 :(文字)

2、性质定理 :(文字)

学习重点:面面平行的判定定理、性质定理。学习难点:应用

学习过程:

一、面面平行的判定定理

1、回答教材56页“观察”中的问题(比划一下),读一遍面面平行的判定定理判断教材56页“探究”的对错(比划一下),再读一遍面面平行的判定定理

不看书你能用数学语言写出面面平行的判定定理吗?

_____________________________________________________________________

2、在教材上完成58页1、33、看明白教材57页例2后,证出它过程中的同理内容,希望你的证明过程更简化

4、做58页练习

2班级___________组______________________层学生___________

二、平面与平面平行的性质定理:_________________________________________(文字)

1、看教材60页“思考”:画出你所想到的所有情形。

2、看明白例5,性质定理与这道例题及思考都有什么关系?

三、反思: 面面平行判定定理的条件是——_________,结论是——______________面面平行性质定理的条件是——_________,结论是——______________

四、看明白例6。注意:证明出平行四边形的意义。

五、例题(教材62页7、8、B组2、3、4填空在书上)

A7

A8

B

2B

3思考:

1、B为ACD所在平面外一点,M、N、G分别为ABC、ABD、BCD的重心,(1)求证:平面MNG//平面ACD。(2)求SMNG:SABC2、用平行于四面体ABCD的一组对棱AB、CD的平面截此四面体,(1)求证:所得截面 MNPQ 是平行四边形

(2)如果ABCDa求证MNPQ的周长为定值

反思:______________________________________________________________________________________________________________________________________

第四篇:平行四边形的性质定理和判定定理及其证明

4.1平行四边形的性质定理和判定定理及其证明

姓名:成绩:

1.在四边形ABCD中,O是对角线的交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC, AD=BCB.AB=DC,AD=BC C.AB∥DC,AD=BC

D.OA=OC,OD=OB

2.如图,在平行四边形ABCD中,AD5,AB3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和

3B.3和

2C.4和

1D.1和

4E 3.如图,在平行四边形ABCD中,AC,BD相交于点O.下列结论中正确的个数有()结论:①OAOC,②BADBCD,③ACBD,④BADABC180.

A

D.4个

第3题图

A.1个B.2个C.3个

4.能够判别一个四边形是平行四边形的条件是()

A.一组对角相等B.两条对角线互相垂直且相等C.两组对边分别相等D.一组对边平行 5.下列条件中不能确定四边形ABCD是平行四边形的是()

A.AB=CD,AD∥BCB.AB=CD,AB∥CDC.AB∥CD,AD∥BCD.AB=CD,AD=BC 6.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是()

A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88° 7.四边形ABCD中,AD∥BC,要判别四边形ABCD是平行四边形,还需满足条件()

A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠B=180°D.∠A+∠D=180° 8.以不在一条直线上的三点A、B、C为顶点的平行四边形共有()

A.1个B.2个C.3个D.4个

二、填空题

5.如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是

(添加一个条件即可)

6.在四边形ABCD中,AB=CD,AD=BC,∠B=50,则∠A=_______,∠D=_________。7.如图,平行四边形ABCD中,AC、BD相交于点O,已知AB=8cm,BC=6cm,△AOB的周长为18cm,那么△AOD的周长为__________。

如图2,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF

为平行四边形.

D

第5题图

C

C

A第7题图

9.如图:平行四边形ABCD的对角线AC、BD相交于点O,MN过点O与AB、CD

相交于M、N,你认为OM、ON有什么关系?为什么?

10.如图,△ABC中,BD平分∠ABC,DE∥BC交AB于点E,EF∥AC交BC于F,试说明

BE=CF。

A

12.如图,D、E是△ABC的边AB和AC中点,延长DE到F,使EF=DE,连结CF.四边形BCFD是平行四边形吗?为什么?

13.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形,说明理由

.三、如图3,田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵大核桃树.田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形的形状,请问田村能否实现这一设想?

若能,请你设计并画出图形;若不能,请说明理由(画图要保留痕迹,不写画法).

第五篇:高中数学立体几何部分定理

高中数学立体几何部分定理

公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3: 过不在同一条直线上的三个点,有且只有一个平面。推论1: 经过一条直线和这条直线外一点,有且只有一个平面。推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面

1、按是否共面可分为两类:

(1)共面:平行、相交

(2)异面:

异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为(0°,90°)esp.空间向量法 两异面直线间距离: 公垂线段(有且只有一条)esp.空间向量法

2、若从有无公共点的角度看可分为两类:

(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面

直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

①直线在平面内——有无数个公共点

②直线和平面相交——有且只有一个公共点

直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。esp.空间向量法(找平面的法向量)

规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角

由此得直线和平面所成角的取值范围为 [0°,90°]

最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角

三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直

esp.直线和平面垂直

直线和平面垂直的定义:如果一条直线a和一个平面 内的任意一条直线都垂直,我们就说直线a和平面 互相垂直.直线a叫做平面 的垂线,平面 叫做直线a的垂面。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

③直线和平面平行——没有公共点

直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

两个平面的位置关系:

(1)两个平面互相平行的定义:空间两平面没有公共点

(2)两个平面的位置关系:

两个平面平行-----没有公共点; 两个平面相交-----有一条公共直线。a、平行

两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交

二面角

(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为 [0°,180°]

(3)二面角的棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.两平面垂直

两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为 ⊥

两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

Attention:

二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)

多面体

棱柱

棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

棱柱的性质

(1)侧棱都相等,侧面是平行四边形

(2)两个底面与平行于底面的截面是全等的多边形

(3)过不相邻的两条侧棱的截面(对角面)是平行四边形

棱锥

棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

棱锥的性质:

(1)侧棱交于一点。侧面都是三角形

(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

正棱锥

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形

esp: a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

Attention:

1、注意建立空间直角坐标系

2、空间向量也可在无坐标系的情况下应用

多面体欧拉公式:V(角)+F(面)-E(棱)=

2正多面体只有五种:正四、六、八、十二、二十面体。

attention:

1、球与球面积的区别

2、经度(面面角)与纬度(线面角)

3、球的表面积及体积公式

4、球内两平行平面间距离的多解性

cool2009-01-29 15:44

两点确定一直线,两直线确定一平面。

一条直线a与一个平面o垂直,则该直线与平面o内任何一条直线垂直。

一条直线a与一平面o内两条相交直线都垂直,则该直线与该平面垂直。若直线a在平面y内,则平面y与平面o垂直。

平面o与平面y相交,相交直线为b,若平面o内衣直线a与直线b垂直,则平面o与平面y垂直。

一条直a与平面o内任何一条直线平行,则直线a与平面o平行。

直线a与平面o以及平面y都垂直,则平面o与平面y平行。

下载立体几何判定定理及性质定理汇总word格式文档
下载立体几何判定定理及性质定理汇总.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学立体几何模块公理定理

    高中数学立体几何模块公理定理汇编 Hzoue/2009-12-12 公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内. Al,Bl,且Aα,Bαlα.(作用:证明直线在平面内) 公理2 过不在......

    高中立体几何常用结论、定理

    立体几何中的定理、公理和常用结论 一、定理 1.公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 若A∈l,B∈l,A∈,B∈,则l⊂. 2.公理2如果两个平面有......

    32-1 等腰三角形的性质定理和判定定理及其证明

    我的课堂我做主,我的命运我把握学科导学卡课题17.1 等腰三角形主编王海鹏 审核在合作中提升学习兴趣,在探索中追求知识的真谛B你说我讲 快乐课堂 你争我抢放飞梦想......

    平行四边形判定定理教案

    18.1.2平行四边形的判定 (第一课时) 一、教学目标(一)知识教学点 1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用. 2.使学生理解判定定理与性质定理的区别与联......

    高二数学立体几何基本知识及定理

    1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类......

    立体几何定理简要总结[共五篇]

    1. 直线与平面平行、直线与平面垂直 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行线面平行”) 直线和平......

    面面垂直性质定理

    数学学案【学习目标】1.掌握平面与平面垂直的性质定理;平面与平面垂直的性质编辑:2.能运用平面垂直的性质定理解决一些简单问题;3.了解平面与平面垂直的判定定理和性质定理间的......

    面面平行判定定理教案

    2.2.2面面平行的判定教材:普通高中课程标准实验教科书人教A版必修二教学目标一、知识与技能1.理解面面平行判定定理并初步应用;2.化归与转化思想在解决实际问题中的应用。二、过......