DE34基站典型跳频故障分析

时间:2019-05-13 19:42:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《DE34基站典型跳频故障分析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《DE34基站典型跳频故障分析》。

第一篇:DE34基站典型跳频故障分析

DE34基站典型跳频故障分析

随着网络容量的不断扩大,基站运行的载频数目不断增加,使得基站开通跳频功能就显得很有必要。洛阳移动通信公司近来对跳频有问题的基站(NOKIA设备)进行了排查,重点解决基站不能开跳频、有跳频告警、开通跳频后质量下降等问题,以期发挥跳频的优势,提高网络运行质量。在处理过程中,发现造成基站跳频故障的原因主要有以下四方面: 一. 载频(TRX)跳频质量不好

故障现象:加跳频后,个别载频出现7515或7516告警

故障浅析:在小区没有开通跳频时,基站正常工作。开通跳频后,个别载频会出现7515(Failure In Connection To Frequency Hopping)或7516(Data Transfer Failure In Frequency Hopping Detected By TRX)的二星级告警。我们知道在没有开跳频的小区中,每个载频的基带部分与射频部分可理解为直通,每个载频有固定的频率,手机在通话过程中,占用固定的频率(不考虑切换的条件下),此时的F-BUS即跳频总线不起作用。但是在基带跳频中,载频中的基带部分和射频部分在逻辑上相对独立,F-BUS在基带部分和射频部分之间起交叉连接的作用,依据不同的跳频序列,同一个载频基带部分的信号送往不同载频的射频部分。实现基带跳频时,载频中的DSP与F-BUS间要能正确的收发数据。当载频与F-BUS间不能正确的收发数据时,就会出现7515或7516告警。载频的这种潜在的质量问题,只有在开跳频功能时,我们才得以觉察到。

解决方案:由以上分析可知,只要更换有问题的载频即可。需要指出的是,如果有一个以上的载频有告警时,应该尝试依次更换其中的一个载频,以查出到底是那一块载频质量不好。因为在实践过程中,发现过这样的情况:一块载频不好,能导致其余的载频出现误告。二. BCFA板故障

故障现象:整个小区所有载频出现7516告警

故障浅析:对跳频总线的控制,既FHBC(Frequency Hopping Bus Controller)功能是BCFA(Base Control Function Unit)板的重要作用之一。位于BCFA中的FHDSP(Frequency Hopping Processor)主要负责对跳频的控制,FHDSP通过从主处理器装载相关软件和参数,计算各个载频从F-BUS线读取数据的时间来实现对跳频的控制。如果FHBC这一功能模块出现问题,则基站就无法实现其跳频功能。九龙台1、2扇区,滚石城1、2扇区未开跳频时一切正常,因为FHDSP处于空闲模式;当开跳频时,BCFA所控制小区的所有载频尽管工作状态处于WO状态,但是所有的载频均出现7516告警。解决方案:这种障碍比较易解决,现象也比较特殊,更换BCFA即可。三.F-BUS线不好

故障现象:整个扇区不能工作,载频处于BL-SYS或BL-TRX状态,伴随7515或7516告警

故障浅析:由第一种分析可知,F-BUS线在跳频的实现中也处于重要的地位,起到类似交叉连接的功能,它是8比特的并行总线,传输速率为4Mb/S,在FHDSP的控制下负责数据的接收和传送,并对数据进行校验。F-BUS线从BCFA板复连至各个载频,在不开跳频时,不被FHDSP和TRX所使用,其质量好坏是无从得知的。

解决方案:由于物理上F-BUS包含于D-BUS中,所以更换好的D-BUS线即可。这种情况所占的比例不大,但是定位到底是哪一根D-BUS线故障时,需要尝试,比较麻烦。四. 连接线接触不好或错位

故障现象:开通跳频后,小区的DL或UL质量下降

故障分析:在正常开通跳频后,基站没有告警,所有载频工作正常,但小区的DL(下行链路)或UL(上行链路)质量下降,主要表现为小区的DL或UL的6和7级加在一起达10%以上甚至更高。出现质量下降的原因有两种情况:个别载频本身质量不好,在没有开跳频时,质量不好的载频的占用时长远比好的载频短的多。开跳频时,情况就不一样了,质量不好的载频被强制性的占用,导致整个小区的质量明显下降;另外一种原因是载频上的连线不良,如载频上的TX、RX、DIVRX等连线松动,也会导致所连的载频工作质量下降,从而影响整个小区的工作质量,第二种情况比较常见。必要时,也要检查天馈部分的连接情况。解决方案:仔细检查,确保连接正确、牢靠。

以上只是基站跳频问题常见的原因。实践中,常有一些跳频故障是混合型的,即不是单纯的一种原因,而是多种原因混杂在一起。这就更需要我们在查障碍的过程中,以十足的信心和耐心来面对它,相信问题总是会圆满解决的。附表:典型跳频故障举例

站名 告警内容 故障原因 处理后情况 解放路1 7515 TRX质量不好 正常 伊川电信局1 7516 TRX质量不好 正常 九龙台1、2 所有载频7516 BCFA问题 正常 滚石城1、2 所有载频7516 BCFA红叶3 跳频开不起来 F-BUS道北东3 跳频开不起来 F-BUS西工1 UL6+7=70 RX解放路3 UL6+7=44DL6+7=48

河南移动通信有限责任公司洛阳分公司问题 正常 问题 正常 问题 正常

连线不好 UL6+7=1.8DL6+7=0.4 分极馈线不良 UL6+7=1.4DL6+7=0.7 张志勇

第二篇:爱立信基站典型故障处理案例[定稿]

爱立信基站典型故障处理案例

案例1:对基站进行IDB的配置总是无法完成,提示为时间超时。当对基站进行IDB数据的配置时,因为TRU与DXU软件版本不一致,或BSC下载软件的同时进行DXU数据配置而产生冲突,或第一次IDB配置电源电压类型错误,或短时间内频繁的对DXU进行IDB配置等原因,偶尔可能导致再进行IDB的数据配置时,出现提示为时间超时而无法完成的现象。导致DXU同机架内部的通信上存在异常现象,出现类似机架掉死的现象,更换DXU无效。

解决的办法是,将DXU(或新的DXU)放到同基站的其它机架上,或另外的基站上,仅对DXU加电,按照存在问题的机架配置进行IDB的重新配置,完成后再安装到存在问题的机架上,不必再重新配置,对DXU等各模块加电重起,即可解决问题。

案例2:RBS200基站工作不稳定,经常退服。基站各部件的稳定工作离不开稳定的时钟信号,而基站的时钟信号是从PCM传输中提取的,爱立信的基站不提供外部时钟输入的端口, RBS200基站是爱立信早期推出的GSM基站产品,这些基站设备是基于采用传统的PDH传输组网方式而设计的,并不非常适用于SDH传输组网方式,这就会导致RBS200基站在和某些厂家的SDH传输设备配合使用时,导致基站工作不稳定,频繁出现时钟同步的告警,经常退服,严重影响了基站的正常运行。

解决办法有两种:一种是将RBS200基站使用的SDH传输更换为PDH传输;另一种是将RBS200基站设备更换为RBS2000基站设备,因为RBS2000对同步要求较RBS200低,能够很好同SDH传输配合工作。

案例3:开始时,马厂湖基站有部分TS总是无法正常工作,且不固定在某个载频上,更换TRU、DXU无效,对基站的数据进行拆掉重新加载后仍无效,后来整个基站所有的TS均无法正常工作,基站硬件、传输、数据等均不存在问题。点检查了基站的所有硬件均不存在故障现象,对怀疑有问题的TRU、DXU进行了更换;对传输进行了环路测量,也未发现传输电路存在质量问题;检查小区、基站的定义数据也都正常。怀疑基站的数据存在掉死的现象,但没有确凿的证据。尝试用另外一种方法进行故障的定位。从BSC的ETC传输接口处,即ETRBLT板子2M接口处将马厂湖基站的传输DIP=97同另外一个类似配置的基站装载机厂的传输DIP=98直接进行互换,也就是说互相用对方基站的数据来开通基站。互换后发现,马厂湖基站的数据在装载机厂基站上仍然存在同样的问题,而装载机厂基站的数据在马厂湖基站上却能正常工作。这就可以说明,马厂湖基站的硬件、传输均不存在问题,基站数据确实存在掉死的现象。

在确认马厂湖基站的数据存在掉死的情况后,重新定义了新的TG数据,来替换原先存在掉死现象的TG数据,整个基站恢复正常运行。

对上述基站数据掉死的解决办法还有一种是进行BSC的重新启动,因为需要在晚上进行,因此可能会导致基站退服的时间较长。

案例4:中国银行基站第2小区对应的机架为2个CDU C,4个载频配置,总是在4个载频全部开起来后,又很快全部退服,现象为第1、2个TRU状态为TX not enabled,第3、4个TRU为Fault灯和Operational灯同时亮。每次对DXU进行复位,总是出现上述的同样现象,整个小区无法正常运行。

因为第3、4个TRU总是出现故障现象,将这两个TRU更换,仍然出现同样的故障现象;更换第3、4个TRU对应的第2个CDU C,仍然出现同样的故障现象。将第3、4个TRU放到第5、6个TRU的位置上,将第2个CDU放到第3个CDU的位置,这样载频的位置为第1、2、5、6,甩开TRU第3、4位置不使用,整个小区正常运行,不再出现上述故障现象。

根据以上处理过程进行分析,应该是第2个CDU C对应的CDU BUS总线或第3、4个TRU对应的背板存在问题,导致第2个CDU C不能正常工作,不仅导致第3、4个TRU不能正常工作,而且导致整个小区不能正常工作。

将第2个CDU C对应的CDU BUS总线拆下来,更换一新的CDU BUS总线后,故障解决,确认是第2个CDU C对应的CDU BUS总线存在问题。下图是CDU BUS的连接示意图:

还有一种解决办法,就是将CDU C更换为CDU C+,并且使用Y cable,按照如下图连接:

这样就可以不再使用第2个CDU C对应的有问题的CDU BUS总线,就不会出现整个小区开不起来的现象。

案例5:沂水城东基站A小区扩容一个机架,由6载频扩容为8载频。在打开跳频的情况下,A小区所有8个载频的时隙全部正常工作后很快陆续全部退服,同时出现1A级的XBus Fault告警,但告警很快又消失。对基站A小区复位或闭解CF,仍然是同样的故障现象。将A小区的跳频关掉后可以正常运行。

针对出现的XBus Fault告警,重点检查了新增扩的机架TRU和DXU背板跳点设置,CDU BUS的连接情况,均未发现异常,更换DXU也不能解决问题。考虑到当时是在上午忙时,此小区承担的话务量很高,有可能是因为A小区重起时接入用户太多导致负荷过高而不能以跳频方式正常运行,设置A小区参数CB=YES禁止待机时手机接入,设置A小区为Layer=3小区限制其它小区手机用户向A小区切换,这样的参数设置曾经解决过类似大容量小区在打开跳频的情况下忙时重起困难的问题,但仍不能解决沂水城东A小区的问题。

怀疑新增扩的2个TRU虽然状态显示正常,但仍然可能存在问题,导致XBbus工作异常。由于A小区的主架的6个TRU和副架的2个TRU间已多次互相倒换位置来排除TRU的问题,已经不能分清哪2个TRU是新增扩的。于是将A小区的所有8个载频全部替换,问题解决。总结:某个存在故障的TRU可以导致其背板连接的总线工作异常,在这个案例中,导致了XBus工作异常,小区不能打开跳频,但是此TRU的状态显示完全正常。解决办法是替换怀疑有问题的TRU,尤其是新增扩的TRU,不要采取在有问题的小区内互相倒换的方式,因为存在故障的TRU无论在那个位置均可以导致同样的故障现象。应该用其它小区或新带来得TRU替换。

还有一个例子也是存在故障的TRU导致其背板连接的总线工作异常的情况:某小区新扩一个机架,载频由6个扩容到7个,但是每次启站时总是很快出现驻波比过高的基站告警,所有载频全部退服,故障原因是新扩的TRU(在新扩的副架上)存在问题,虽然表面状态均很正常,但是把它插到机框内加电后,就会干扰背板总线的正常工作,导致出现整个小区驻波比过高的问题产生。

案例6:付庄基站为3个RBS2202机架级联、4/4/4配置,故障现象为B小区退服,复位后B小区恢复正常,但几小时后又再次退服,基站不存在任何告警。如此反复,B小区工作状态很不稳定。

因为是在基站运行中出现的故障,所以首先怀疑是B小区DXU出现故障,但是更换后仍无法解决。检查B小区的射频电缆、PCM传输电缆、CDU总线均无异常。通过OMT软件监测付庄基站3个机架DXU的PCM连接状态均正常。考虑到B小区是级联A小区的,即PCM传输电缆从A小区DXU的G.703-2端口连接到B小区DXU的G.703-1端口,这段传输通路是否存在问题?更换这段通路上的所有传输电缆,仍不能解决问题。再向前考虑一步,是不是A小区DXU的G.703-2端口存在问题,虽然没有故障状态显示?更换A小区的DXU,重新配置IDB数据后,问题解决。

总结:针对多机架级联的基站,第2、3小区退服的情况,要考虑前一级级联的小区所在的机架是否存在DXU故障、PCM传输电缆接错、IDB数据中未定义PCM级联等情况。

案例7:某个基站第2小区有3个时隙LMO状态为0800,复位和更换载频后无效。

检查基站的定义数据,发现第2小区对应的TG-139,在定义半永久连接关系时,将RBLT-1309与DCP 28连接是错误的,导致DCP 28相对应的4个TS时隙,无法正常工作。应该是RBLT-1308与DCP 28连接,正确修改后,故障解除。类似的故障现象可能还有如下的故障原因:(1)某个基站第2小区4个时隙LMO状态为0800复位和更换载频无效:用DTIDP指令检查DIP的定义数据,发现MODE=1是错误的。RBS200基站的DIP定义为MODE=1,即传输的第16时隙仅用于传信令,不用于传话音。而此基站为RBS2000基站,正确的定义是MODE=0,如果定义为MODE=1,会导致DCP 16,即传输的第16时隙不能正常使用,出现上述的故障现象,或者导致用户占用时出现单通现象。

(2)某个基站第3小区2个时隙LMO状态为0800,复位无效: 第3小区的2个时隙的故障原因是在定义基站数据时,MO CF的参数SIG=UNCONC错误,因为所有的TRX的SIG=CONC,导致TG分配的DCP不够用。将MO CF的参数该为SIG=CONC,故障消除。

案例8:某个新建基站传输状态正常,硬件也不存在问题,但基站开不起来 基站数据定义看起来不存在问题,其它检查也做了很多,但基站仍然不能开起来。重点检查基站DIP所连接的SNT的DEVICE数据定义,会发现RBLT的状态不对,为MBL闭掉的状态,试图解闭,可能还会发现未完全定义,再用EXDAI、EXDUI指令进行补充定义,解闭此SNT所带的RBLT,再重新LOAD基站数据后问题解决。对新建基站开不起来的情况,还有BSC侧MO=RXOCF的TEI值与基站OMT软件定义的不一致,导致基站无法同BSC建立联系。此种情况较多的出现在级联基站上,重新定义,使基站的TEI值同BSC侧定义的TEI值一致便可解决问题。

案例9:盲校基站存在瞬断现象,导致信道完好率虽然很接近但达不到100%,同时基站传输设备也出现传输瞬断的现象。

检查基站硬件设备,及传输设备均未发现异常,更换DXU也无法解决问题。在基站上进行故障处理时,发现老式的爱立信开关电源存在模块损坏的情况,但仍能正常工作。经过长时间现场观察,发现交流电压不稳定,忽高忽低,当电压过高时,开关电源的过压保护器便跳脱保护,爱立信开关电源所有的模块处在过压保护的状态,同时传输设备瞬间复位,导致基站瞬断。此时就发现了交流电压过高可能是导致盲校基站瞬断的原因。经过分析,老式的爱立信开关电源对交流电电压波动范围的适应性较差,当电压过高超出其限定值时,开关电源的所有模块出现瞬间的保护而导致其直流输出电压异常,从而导致传输设备因直流供电不能满足要求而瞬间复位,导致爱立信基站瞬间退服。

将老式的爱立信开关电源更换为能适应宽范围交流电压波动的新式开关电源,问题解决,盲校基站再也未出现瞬断的现象。这样的情况也存在于其它部分型号的、对交流电压波动适应性差的老式开关电源上。

案例10:柳行头基站为九期新建全向2载频基站,传输环路状态正常,不存在滑码、误码等传输质量差的情况,基站硬件状态正常,不存在任何告警,但将传输头子接到DXU的G.703-1接口后,BSC侧传输状态显示WO正常状态,但是DXU黑灯,所有的指示灯均不亮。从BSC侧观察是CF无法Load成功,导致此基站开不起来。

首先全面检查基站硬件、传输设备、传输电缆等均没有发现问题,检查柳行头基站数据、小区数据定义也没有发现问题,更换DXU也不能解决问题。

从BSC的ETC传输接口处将柳行头基站的传输同另外一个相同配置且正在运行的松峰基站传输互换,不必改动任何数据,也就是说互相用对方基站的数据来开通。柳行头基站的数据在松峰基站上运行正常,而松峰基站的数据却无法在柳行头基站上运行,这就可以说明柳行头基站的数据不存在错误、掉死等异常情况,而从BSC到柳行头基站的传输通路上存在问题,也可能是基站硬件存在问题(这已排除)。

这样重点怀疑从BSC到柳行头基站的传输通路上存在问题,需要仔细检查,传输维护人员从BSC往基站方向一段一段进行检查,果然发现在北园传输机房处柳行头基站的传输跳线存在问题,120欧姆4根信号传输线中的一根与配线端子处在似接触非接触的状态,重新卡接后,柳行头基站CF软件load成功,基站顺利开通,问题解决。

需要注意的是,基站电路环路时是通的,并不能代表基站电路完全不存在问题,因为还存在类似上述传输信号线接触不好、远端告警等一些特殊的传输故障现象。

案例11:邮政局基站C小区扩容到主、副架共12个载频,但是最多只能开起来10个载频,总有2个载频无论如何也开不起来,并且这2个开不起来的载频位置不固定,状态表现为仅Tx not enable灯亮。基站不存在告警。更换相应的载频无效。仔细观察开不起来的2个载频的故障现象,发现总是某一个CU上的2个载频同时出现开不起来的现象,虽然这个CU也不是固定的。将12个载频中的某两个位于同一个CU上的载频TRX闭掉,其它10个载频均能正常工作。

根据以上现象,考虑到爱立信基站载频相互间发射部分TX和接收部分RX存在“借用现象”,即载频A的RX(可能载频A的TX存在问题)和载频B的TX可以组成一个完整的正常工作的“载频”,而载频A的状态可能为正常运行状态,而载频B的状态为仅Tx not enable灯亮。

进一步从BSC上观察邮政局基站C小区各MO的工作状态,发现最后2个载频的TX-11&&-12工作状态开始时总是NOOP,过一段时间之后状态变为FAIL,但是考虑到最后2个载频的TX发射部分可以借用另外2个载频的TX发射部分,即存在TX的“借用现象”,因此状态仍有可能是正常运行的。导致TX状态为FAIL的原因有发射通路上的CDU存在问题,连接的天线驻波比过大,TX定义的连接小区错误,TRU的发射部分存在故障等原因。经过排查,重点怀疑是最后2个载频,即TRX-11&&-12对应连接的CU存在问题,虽然此CU的运行状态正常,无故障灯指示。更换此CU后,邮政局C小区的12个载频全部开起来,问题解决。这种类型的故障处理,不要被基站各硬件的运行状态显示所迷惑,可能状态是正常的,但是也有可能存在问题,就像上面所讲的CU的故障现象。

案例12:TX无法正常工作,基站告警为CDU output power limits exceeds 九期工程中,在开通西梁王基站(S2,2,2)时,发现虽然基站本测过程中,各MO 状态正常,均无告警,但是在开站时,当TX打开后, B小区CDU的Fault 红灯亮,,小区不能工作。我们通过OMT查寻告警,监测到SO CF 2A:9 :CDU output power limits exceeds。首先我们怀疑天馈系统有问题,用驻波比测试仪测得DTF值1.08,SWR值1.19,均为正常值。随后更换了CDU及TRU后故障仍未排除。最后我们根据TX的原理,输出功率由前向及反向功率的比较得出的(Reference RBS2202),于是检查对应的Pref,Pfwd馈线,发现标签贴反,导致反向功率总大于前向功率,更改后故障消除。

案例13:基站存在SO CF 2A: Timing bus fault告警,TRU无法工作。建工大厦基站(S6,6,6,)在扩为(S8,6,6)时,A小区扩容的副柜TRU状态不对,TRU的Fault在自检后长亮。此时B,C小区已正常。用B,C小区的机柜带A小区的副柜无问题,从而证明A小区的副柜本身无问题。通过OMT查寻告警,监测到SO CF 2A: Timing bus fault。更换C5 BUS线后故障仍未排除,于是判定故障点应在A小区机柜本身之内。根据OMT读出告警,判断故障为机柜内 BUS问题,更换后状态正常,A小区正常工作。

案例14:PSU的排障方法

下面是满配置的PSU与ECU的光纤连接示意图: 在基站出现同PSU相关的告警后,到基站上观察PSU的状态,可能有如下两种情况:第一种是PSU亮红灯或不亮灯,第二种是PSU面板状态正常但可能存在故障。针对第一种情况,首先检查PSU的-48V直流(PSU-48)或230交流(PSU 230)输入是否正常,可能存在输入开关跳脱或熔丝熔断的情况,如果排除上述情况,那么很可能是亮红灯或不亮灯的PSU存在故障,进行更换确认。对更换后的新PSU,应该先加-48V直流或230交流输入(下面的接头),再连接直流输出接头(上面的接头),否则容易导致新加的PSU因为直流电流倒灌的原因而再次损坏。针对第二种情况,使用逐个排除的方法来找出存在故障但面板显示正常的PSU。满配置的PSU数量一共是4个,与ECU通过光纤串联在一起,形成一个环路。首先甩开左边第1个PSU,将剩下的3个PSU同ECU通过光纤串形连接,再观察基站的PSU相关告警是否消除,如果消除,则说明左边第1个PSU存在故障,进行更换;如果故障仍未消除,可将左边第2个PSU单独甩开,将剩下的3个PSU同ECU通过光纤串形连接,需注意的是从左边第1个PSU直接连接到第3个PSU的光纤需要换成长一点的光纤,再观察基站的PSU相关告警是否消除,以此类推,逐个排查PSU。除了上述方法,类似的,还可采用每个PSU单独同ECU串形连接,再观察基站告警是否消除的方法,逐一进行排查。还有一点需要说明的是,基站对PSU的识别并不是完全根据PSU的安装位置,例如最左边的PSU被识别为PSU-0,向右依次为PSU-

1、PSU-

2、PSU-3,实际上并不是这样的。基站识别PSU是通过光纤环路来识别的,不在这个环上的PSU将不被识别,同时针对这个不在环上的PSU基站也不会产生告警。光纤环路连接最左边的PSU被识别为PSU-0,然后依据光纤环路上的连接,向右依次识别为PSU-

1、PSU-2等,例如PSU-0,它的实际安装位置可能是从最左边数第3个PSU。

有一个故障现象是某个PSU的架顶-48V输入接口因短路损坏严重,不能再使用,并且基站存在相应告警。消除告警的办法是在PSU与ECU的光纤环路中,甩开这个损坏严重的架顶-48V输入接口对应的PSU,再从IDB数据中删除多余的PSU(损坏的接口对应的)即可消除告警。

第三篇:继电保护典型故障分析

继电保护典型故障分析

摘 要 继电保护对电力系统的安全正常运行具有重要的作用,它能保证电力系统的安全性,还能针对电力系统中不正常的运行状况进行报警,监控整个电力系统。目前我国电力系统继电保护工作还是会存在一些问题,容易出现各种故障,造成电力系统无法正常运行。本文即分析了继电保护的典型故障,并详细阐述了继电保护典型故障的防治策略。

【关键词】继电保护 典型故障 元器件 接线错误 短接法 电力系统继电保护概述

1.1 电力系统继电保护装置的构成要素

电力系统机电保护装置的构成一般包括输入部分、测量部分、逻辑判断部分和输出执行部分。

1.1.1 输入部分

该部分通过隔离、低通滤波等前置处理方式对电力系统出现的问题和故障进行前置处理。

1.1.2 测量部分

该部分主要负责将测量信号转换为逻辑信号,进而通过逻辑判断按照一定的逻辑关系组合运算,最后确定出执行动作,并由输出执行部分最终完成。

1.2 继电保护装置的特征分析

1.2.1 选择性特征

选择性特征是继电保护装置智能化的表现,在电力系统出现故障时,继电保护装置能够做到有选择性的对出现故障的部分进行处理,另一方面保证无故障部分的正常运行,这样便可以保证整个电力系统的稳定及电力供应的连续。

1.2.2 快速性特征

快速性特征是继电保护装置高效率的体现,在电力系统出现故障时,继电保护装置能够在第一时间切断故障系统,从而减轻故障设备和线路的损坏程度。

1.2.3 可靠性

可靠性是指电力系统继电保护装置在处理问题和故障时要科学可靠,减少不必要的损失。继电保护的常见故障

2.1 设备故障

继电保护装置是电力系统中不可或缺的一部分,是保护电力系统的基础和前提。一般设备有装置元器件的损坏、回路绝缘的损坏以及电路本身抗干扰性能的损坏,具体的表现为整定计算错误,这主要是由于元器件的参数值和电力系统运行的参数值与实际电流传输的参数值相差甚远,从而造成整定计无法正常工作。还有,设备很容易受到外界因素的影响,如温度和湿度。由于设备具有不稳定性,很容易由于温度和湿度的变化而造成定值的自动漂移,有时候也可能是因为设备零部件的老化和损坏造成的。

2.2 人为操作

人为原因一般就是工作不够细心,对系统内各项设备数值的读数观察不够仔细,导致读错设备整定器上的计算数值,导致继电保护故障,且对故障的检查技术水平不够,无法及时准确地发现故障段,从而造成大面积的电路故障问题,导致系统无法正常供电。

当工作电源出现问题时,电力系统保护出口处的动作过大,造成电路内波纹系数过高,输出的功率就不够,电压便会不稳定,当电压降低或者电流过大时,如果保护行为不恰当极容易出现一系列的继电保护故障。继电保护典型故障的防治策略

3.1 元件替换法

元件替换法,顾名思义,就是用正常的元件将出现故障的元件替换下来,这样能够将故障范围迅速缩小,提高维修人员的维修效率,因此是机电保护装置故障处理中经常用到的方法。

3.2 参照法

参照法是指通过对不同设备的技术参数的对照,找出不正常设备的故障点。此法主要用于检查认为接线错误,定值校验过程中发现测试值与预想值有较大出入又无法断定原因之类的故障。另外需要注意的是,在继电器订制校验时,若发现某一直继电器的测试值与整定值相差很多,那么此时要用同只表计去测量其他相同回路的同类继电器进行进一步的比较,错误的做法是在发现数值不同时,轻易调整继电器的刻度表。

3.3 短接法

短接法是缩小故障范围常用的一种方法,是将回路某一段或一部分用短接线接入为短接,进而判断出故障是存在短接线的范围还是范围外。短接法对判断电磁锁失灵、电流回路开路等故障具有明显的优势。

3.4 继电保护典型故障的预防措施

3.4.1 构建完善的电力管理体系是基础

构建完善的电力管理体系是预防电力系统继电保护故障的基础,构建该体系需要做好以下工作:

首先要逐步形成科学有序的管理体系,这其中,一支高素质的管理队伍是不可或缺的,这需要电力企业加强对管理人员和工作人员的培训,使其掌握电力系统管理的知识技能。另外管理体系内的各个部分要职权分明、责任落实,这样才能保证管理体系的井然有序和正常运作。

其次,完善的监测评价体系也是十分必要的。监测评价体系具有监督指导的作用,通过建立该体系,在全电力系统中形成严谨的工作氛围,有利于很大程度上提高电力工作的质量,进而能够及时正确的发现继电故障,将故障消灭在萌芽状态,从而保障电力系统的有序运行。

3.4.2 加强电力系统的技术管理是核心

技术管理作为降低继电保护故障率的核心,具有十分重要的意义。可以通过采用先进的技术来提高电力系统的智能化水平,从而有效减少继电保护故障的发生。

第一,提高电力系统的自动化水平。在设计和开发电力系统时,要加强新技术的开发和应用,包括自动控制技术和智能技术。这样电力系统出现故障时,智能化技术便能有效避免继电保护障碍的发生。

第二,运用新技术来增加电力系统设备的承受能力。比如,继电保护中使用CPU容错技术。由于CPU容错技术具有一定的恢复能力,所以它能够在更大程度和范围内降低电力系统硬件问题带来的影响,从而起到保护继电保护装置的作用。

3.4.3 提高电力工作人员的素质

电力工作人员素质是影响电力系统管理水平的重要因素。因此,电力企业要加强对电力工作人员业务素质的培训教育,提高其责任意识和安全意识,并通过一些业务培训,提高其实际操作能力,促使电力企业员工能够更好的处理电力系统中出现的各种问题。

参考文献

[1]蒋陆萍,胡峰.冷建群.继电保护故障快速查找的几种典型方法及应用[J].电力系统保护与控制,2009(18).[2]刘亚玉.分析备自投装置的启用与运行接线方式的关系[J].继电器,2007(19).[3]应斌.浅谈继电保护工作中故障处理的若干方法[J].广西电力,2006(04).作者单位

国网甘肃省电力公司检修公司 甘肃省酒泉市 735000

第四篇:开关柜典型故障分析

高压开关柜典型故障分析

电力系统广泛使用10kV(含6kV)—35kV开关柜,担负着发电厂用电、变电站和用户供电的任务,且用量大,分布广。由于1OkV-35kV开关柜的设计、制造、安装和运行维护等方面均存在不同程度的问题,因而开关柜事故率比较高,危及人身、电网和设备安全,影响供电可靠性。

一、下面列举几种类型的开关柜事故(故障)案例:

(一)开关柜防爆性能不足或防误性能不完善,危及人身安全; 由于开关柜防爆性能不足或防误性能不完善,近几年省内外发生多起人身伤害事件,以下列举四起事故:

1.2006年2月 24日,某 220kV变电站 10kV高压开关柜(GGX2型)由于馈线故障,开关发生拒动,运行人员在处理开关拒动过程中,当拉开开关,确认开关位置指示处于分闸位置后,操作拉开隔离刀闸时,发生弧光短路,造成 2人重伤 1人轻伤。事故后现场检查发现:该开关操作机构 A、B相拐臂与绝缘拉杆连接处松脱,造成 A、B相主触头未分开,在操作拉开隔离刀闸时发生弧光短路。由于906柜压力释放通道设计不合理,下柜前门强度不足,弧光短路时被电弧气浪冲开,造成现场人员被电弧灼伤。开关柜的上述问题是人员被电弧灼伤的直接原因。

2.7月 1日,某单位发生一起因变电运行人员擅自打开10千伏开关柜柜门,误碰带电部位造成的人身触电死亡事故。设备缺陷是事故发生的又一间接原因。由于 6522A相刀闸动触头绝缘护套老化,松动后偏移,刀闸断开时护套卡入动触头与刀闸接地侧的静触头之间,造成刀闸合闸时卡涩合不上。且该 GG-1A型高压开关柜系 60年代设计的老旧产品,96年生产,97年投运;原安装有机械程序防误锁,于 2002年改造为微机防误装置,由于此型号的高压开关柜原设计不完善,不能实现线路有电强制闭锁。

3.2009年9月30日,某220kV变电站发生一起10kV开关柜内部三相短路,电弧产生高温高压气浪冲开柜门,造成2名在开关柜外进行现场检查的运行值班员被电弧灼伤,其中1人于10月1日死亡。

4.2010年8月19日,8月19日,某单位在更换某220kV变电站10kV I段母线PT过程中,工作班成员触碰到带电的母线避雷器上部接线桩头,造成2人死亡、1人严重烧伤。

初步分析,事故主要原因为厂家设备一次接线错误。根据国家电网公司典设和设备订货技术协议书,10千伏母线电压互感器和避雷器均装设在10千伏母线设备间隔中,上述设备的一次接线应接在母线设备间隔小车之后(见附图1)。而开关柜厂家在实际接线中,仅将10千伏母线电压互感器接在母线设备间隔小车之后,将10千伏避雷器直接连接在10千伏母线上,导致拉开10千伏母线电压互感器9511小车后,10千伏避雷器仍然带电(见附图2)。

变电站运行人员按照工作票要求,拉出10千伏Ⅰ段母线设备间隔9511小车至检修位臵,断开电压互感器二次空开,在Ⅰ段母线电压互感器柜悬挂“在此工作”标示牌,在左右相邻柜门前后各挂红布幔和“止步,高压危险”警示牌后,向调度汇报。变电站运行人员与工作负责人一同到现场对10千伏Ⅰ段电压互感器进行验电,由于电压互感器位臵在9511柜后,必须由施工人员卸下柜后档板才能进行验电,在验明电压互感器确无电压之后,运行人员许可施工人员工作。由于电压互感器与避雷器共同安装在10千伏Ⅰ段母线设备柜内(见附图3),施工人员在工作过程中,触碰到带电的避雷器上部接线桩头,造成人员触电伤亡。

图1:

附图2

附图3:

(二)开关内设备接(触)头过热性故障

封闭式开关柜在运行中不能打开,因此难以测量运行中柜内接(触)头的实际温度,如不及时发现并处理接(触)头过热性缺陷,严重威胁电力安全生产。固定式开关柜每个进出线间隔共有负荷电流流过的33或39个接(触头),小车移动式开关柜每个进出线间隔共有负荷电流流过的24个(或更多)接(触头)。这些接(触)头直接流过负荷电流,当负荷较大时存在隐患的接(触)头就会严重发热。由于发热点在密封柜内,运行中的柜门禁止打开,值班人员无法通过正常的监视手段发现发热缺陷。一旦触头发热严重必然造成事故发生,影响系统安全运行。下边四起故障分析。

1.2007年2月3日23时59分,某变电站10kV电容器组III644开关跳闸,保护装置显示“过流I段动作”。现场检查发现,10kV配电室有浓烟,10kV电容器组III开关柜下部有着火现象。第二天检查情况:10kV电容器组III 644开关柜内B相CT和铝排连接处松动引起发热导致该处烧断和热缩材料燃烧,A、C相也有放电痕迹。

2.2009年8月16日晚,某变电站发生10kV开关柜故障,烧损多面开关柜。

10kV农专Ⅰ线柜(开关、CT、静触头及套管、母排及相接铜排、母排套管、保护测控装置、屏顶小母线、电度表、二次控缆烧损;出线电缆头轻微灼伤);

A相 B相 C相

开关 电缆头及CT 母线

10kV下白货柜(母排、母排套管、静触头及套管、保护测控装置、屏顶小母线、电度表、二次控缆烧损;相接铜排、开关、CT、出线电缆头轻微灼伤);

母排 保护及二次控缆

10kV医院Ⅰ柜(母排、母排套管、静触头及套管、保护测控装置、屏顶小母线、电度表、二次控缆烧损;相接铜排、开关、CT、出线电缆头轻微灼伤);

保护及二次控缆 母排

故障原因分析:10kV农专Ⅰ线开关柜由于隔离插头接触不良,开关长期在满负荷运行,触头发热引起梅花触头的弹簧退火变形,失去弹性,造成该隔离插头接触电阻变大,运行中发热烧熔,烧损触头周围的绝缘件,最终绝缘击穿,造成触头相间短路故障。

2.2010年8月12日某变电站#1主变低压侧631开关因发热造成开关柜内部三相短路烧毁。

初步分析是:1#主变 10kV侧 631手车开关柜内断路器 A相母线侧梅花插头(上侧)与静触头间接触不良发热,最终发展成梅花插头对静触头电弧放电,导致真空断路器铜触指严重烧损,散热件熔化,穿墙套管烧毁并产生大量的含有金属离子、碳合物的烟气,造成母线三相对地短路(见附图)。

1#变母排开关开关柜接线图

断路器A相触指被电弧烧损。

3.2006年3月8日,某单位在处理某变电站#1主变10kV侧61A3刀闸缺陷时发现:⑴、61A3刀闸断不开,外观检查静触指存在局部过热痕迹。⑵、#1主变10kV侧61A1刀闸下断口A相丢掉两只静触指,静触头夹紧弹簧有过热的痕迹,C相静触头夹紧弹簧有过热的痕迹(有三只弹簧熔在一起),C相支柱绝缘子上有被热气薰的痕迹。⑶、10kV分段回路6001刀闸下断口C相丢掉一只静触指,静触头夹紧弹簧有过热的痕迹(有一只弹簧熔在一起),上断口也存在类似的问题。

该变电站该段母线的开关柜型号为GGX2,61A1、61A3刀闸和10kV分段回路6001刀闸均为户内高压旋转式隔离开关,型号均为GN30-10,4S热稳定电流均为40kA,额定电流:3150A(61A1、61A3刀闸)、2000A(6001刀闸)。

动静触头过热的原因分析:这种刀闸合闸时,静触指与静触座间有间隙,接触的点、面少,在通过大电流时,固定静触指与夹紧弹簧的螺栓和夹紧弹簧参与分流、导电,造成有些螺栓烧断(静触指丢落的原因)和夹紧弹簧过热退火,也造成动、静触头接触不是很好,造成动静触头局部过热、熔焊。

161A1刀闸C相触头的过热情况

图2 61A1刀闸A相触头的过热情况

图3 10kV分段回路6001刀闸的过热情况

图4 丢落的静触指和烧断的固定静触指、夹紧弹簧的螺栓

(三)小动物进入开关柜引起短路故障

2006年9月14日,某单位某变电站#1主变后备保护动作,跳三侧开关。检查发现,10kV开关室烟雾弥漫,10kVI、II段母线联络柜内6001刀闸与10kV母联600开关之间连接线发生相间短路,10kVI、II段母线联络柜下柜门被冲开,下柜门上的观察窗与、断路器前柜门上电磁锁被高温熔化,后柜门下方被电弧烧个洞。10kVI、II段母线联络柜底部有只毛烧光的死老鼠,隔壁柜(备用柜)底部电缆孔洞未封堵(该开关柜原为运行间隔,配网调整间隔,该柜内电缆调到其它开关柜,电缆抽走后孔洞未封堵),10kVI、II段母线联络柜与隔壁柜间的接地铜排穿孔未封堵。

故障原因分析:老鼠从隔壁柜电缆孔进入,再经10kVI、II段母线联络柜与隔壁柜间的接地铜排穿孔爬到10kVI、II段母线联络柜,老鼠活动时引起短路。

(四)开关柜内组件绝缘爬距或绝缘距离不足引起开关柜故障 早期投运的开关柜支持瓷瓶及电流互感器等的外绝缘爬距较小,当运行中绝缘表面出现凝露或有污秽时,系统中出现不高的过电压或运行电压下发生绝缘件沿面闪络。还存在对地和相间距离不够,在系统单相接地谐振或雷电等过电压情况下,直接造成对地或相间击穿。

《福建省电力有限公司户内交流金属封闭高压开关柜订货技术规范》(闽电生产〔2008〕480号)高压开关柜中各组件及其支持绝缘件的外绝缘爬电比距(即高压电器组件外绝缘的爬电距离与额定电压之比)相应值的应用范围应不小于 18mm/kV。单纯以空气作为绝缘介质的开关柜,柜内各相导体的相间与对地距离、手车开关隔离触头与静触头绝缘护罩的净空气距离、相间隔板与绝缘隔板的净空气距离:12kV为125mm,40.5kV为300mm。

《户内交流高压开关柜订货技术条件》(DL 404-1997)规定:在金属封闭式高压开关柜中,凡采用非金属制成的隔板来加强相间或相对地间绝缘时,7.2~12kV高压带电裸导体与该绝缘板间还应保持不小于30mm的空气间隙;40.5kV,保持不小于60mm的空气间隙,且为阻燃材料制成。

2008年9月6日,某变电站#1主变差动速断动作跳闸。从现场检查分析认为:#1主变中压侧33A开关柜过压保护器的A、B相跳线(从固定铝排引至过压保护器的连接铜线)过长,跳线弯曲弧度较大,A、B相跳线同时侧向绝缘隔板,其跳线与绝缘隔板的电气距离(最小处)仅5cm左右。A、B相跳线之间的绝缘仅通过绝缘隔板隔离,长时间运行中造成A、B相跳线对绝缘隔板放电,绝缘档板被碳化后,绝缘破坏并击穿,引起A、B相短路。

A相

B相

(五)开关柜组件质量(如过电压保护器、传感器等)劣引起开关柜故障

1.9月30日8时31分,某变电站10kV中亭I线633开关因过流Ⅰ段保护动作跳闸。现场检查10kV中亭I线633开关柜内过电压保护器A、B相爆炸,该开关柜前柜门下柜门被冲开,前柜门中柜门(断路器前门)轻微变形,柜内其他设备未损伤。

2.2004年11月10日,某110kV变电站因10kV开关短路引发10kV母线故障,造成该变电站全停及10kV部分设备严重损坏。

现场检查情况:最严重的母联刀闸柜的带电显示器传感器(福州高新高压电器有限公司产品)烧损情况:发现A、B相已烧成灰,C相略好;结合刀闸触头烧损情况:C相触头基本完好、A相略有烧损、B相最为严重。推测故障是从B相带电显示器引发,导致电弧相间短路。

为了进一步验证造成本次事故的原因,对开关柜内未损坏的带电显示器传感器,抽两只传感器进行解剖,发现内部芯棒填充剂软化,存在绝缘薄弱点。由于10kV系统出现失地引起过电压,使传感器内部局部放电,逐步发展为贯穿性击穿,造成相间短路。

此外,开关柜故障的原因还有检修预试时在开关柜遗留工具或短接线接地线、误操作等。开关柜故障往往会出现“火烧连营”事故,多面开关柜被电弧烧毁,“惨”不忍睹。造成事故扩大的原因主要有三点:首先,由于开关柜母线室是连通的,当一个间隔故障时,电弧侵犯邻柜造成“火烧连营”;其次,继电保护整定配合不尽合理,保护动作时间过长或保护有缺陷不动作靠上一级保护动作隔离故障,故障时间长造成电弧损害加重;最后一个原因则是高压电弧故障时引起保护损坏或直流电源故障,造成保护失灵,短路长时间不消失,整个高压室几乎所有的开关柜均烧毁,最后连主变lOkV低压架空母线都被弧光烧断,直至越级跳闸,往往连主变也被长时间短路所损坏。

二、防范措施:

(一)加快老旧开关柜(如GG1A、GGX2、XGN型等)改造或完善化大修。各单位要按《关于印发2008-2010年县供电企业电气设备技改、大修指导性意见的通知》(生变〔2007〕145号)加大老旧开关柜技改力度,运行时间短、达不到技改的条件的开关柜要按省公司完善化方案开展完善化大修。

开关柜内绝缘可靠性低的酚醛环氧类绝缘子和爬距不足的绝缘子安排更换为符合要求的瓷绝缘子。母线加阻燃热缩绝缘套,绝缘套本身应耐受20 U,的交流耐压,目的是防止小动物爬人柜内造成短路,也可防止因烟气、游离气体进人时空气间隙绝缘降低造成的弧光短路。

(二)做好开关柜订货、出厂前验收、安装与验收管理工作 根据国际、电力行业标准和《预防交流高压开关事故措施》(国家电网公司生〔2004〕641号)、《预防12kV-40.5kV交流高压开关柜事故补充措施》(国家电网生〔2010〕811号)、《福建省电力有限公司户内交流金属封闭高压开关柜订货技术规范》(闽电生产〔2008〕480号)等文件,做好开关柜招标文件、订货技术协议的审查工作,开关柜出厂前赴厂验收,开关柜安装调试过程安排专业人员开展技术监督工作,组织做好开关柜投产前的验收工作。

把好10kV开关柜的选型及采购关。选型要注意开关设备有关参数是否满足现场运行条件。对开关柜所配的元件应严格把关,尽量选用运行情况良好的产品;并要求验收时,开关设备配置要有各元件试验报告,特别是带电显示器的传感器的局放试验报告,杜绝不良设备入网。

(三)加强巡视运行管理

1.加强巡视中的安全管理,巡视或操作时应严格按照安规和标准作业文本(含标准巡视卡)或 PDA以及操作票的要求进行,巡视或操作时着装应规范,并注意站位。

2.开关柜操作前应确认柜内断路器和隔离开关的实际状态,进行倒闸操作时,应严格监视设备的动作情况,如发现机构卡涩、动触头不能插入静触头、合闸不到位等,应停止操作,待缺陷按规定程序消除后再行操作。3.对防误、防爆等功能不符合规范要求的开关柜,应逐一列出清单,做好危险点分析和预控措施,纳入红线设备管理,并根据红线设备要求在开关柜面板上张贴标识,有计划地安排改造。

4.巡视中应注意开关柜的门和面板是否锁紧,对螺栓丢失、损坏的,应及时上报缺陷处理。

5.严格按照《福建省电力有限公司高压带电显示装置管理规定》的要求,做好开关柜带电显示装置的巡视和维护工作,确保带电显示装置工作正常。

6.对重负荷的开关柜,应重点巡查。无法开展柜内测温的开关柜,可检查柜体温度是否异常。

7.加强保护定值及压板投退管理,避免由于定值或压板投退错误造成事故扩大。

8.在开关柜配电室配置通风、防潮设备和湿度计,并在梅雨、多雨季节或运行需要时启动。

(四)加强检修维护管理

1.开关柜检修重点对触头接触情况(有无过热变色的痕迹)、柜内电气主回路连接螺栓紧固、传动部件轴销的固定情况、机构辅助开关接触、操作机构手车轨道及闭锁装置部件是否有机械变形或损坏等情况等进行检查。对于变电站电容器组等操作频繁的高压开关柜要适当缩短巡视检查和维护周期。

2.已运行的开关柜结合停电检查,开关柜底部以及柜与柜间孔洞是否封堵,有无小动物进入的可能。3.检修试验结束后,应重点检查开关柜有无遗留工具、物件以及试验用的短接线、接地线。

4.由于GGX2、XGN等型号开关柜选用运行中易造成发热的旋转隔离开关(如GN30-12型隔离开关),应结合停电检查隔离开关触头(含弹簧)有无过热或烧损,重点为大电流开关柜(如主变进线柜、分段开关柜等)。

5.对重负荷且无法开展测温的开关柜尽快安排停电检查,可选一、二座变电站尝试安装开关柜在线测温装置。

6.结合停电检查开关柜各相带电体之间、相对地之间空气距离是否符合规范要求(如35kV开关柜的为300mm,10kV开关柜的为125mm)。

7.结合停电检查开关柜的机械联锁,是否满足“五防”要求。检查开关柜内手车活门打开、关闭是否灵活正常。

(五)10、35kV出线多的变电站安排10、35kV系统电容电流测量,10kV电缆线路电容电流达30A和35kV系统电容电流达10A需安排安装消弧线圈。10—35kV母线PT安装消谐装置。

第五篇:跳频通信原理

....跳频通信原理

跳频通信原理跳频通信原理跳频通信原理 简言之跳频就是在无线传输中,射频频率按照某种特定算法发生的重复变化。这种变化通常借助于扩频代码序列发生器。一种利用载波跳变实现频谱展宽的扩频技术。广泛应用于抗干扰的通信系统中。其方法是把一个宽频段分成若干个频率间隔,由一个伪随机序列控制发射机在某一特定的驻留时间所发送信号的载波频率。当接收机的本地振荡信号频率与接收机输入信号的频率按同一规律同步跳变,那么,经过变频以后,将得到一个固定的中频信号即把原来的频率跳变解除,这一过程称解跳或去跳。

发送端的信息码序列与伪随机序列经过调制后,按不同的跳频图案控制频率的合成。在接收端,接收到的信号与干扰经高放滤波后送至混频器。接收机的本振信号也是一频率跳变信号,跳变规律是相同的,两个合成器产生的频率相对应,但对应的频率有一频差,正好为接收机的中频。只要收发方的伪随机码同步,就可使收发双方的跳频源一频率合成器产生的跳变频率同步,经混频后,就可得到一个不变的中频信号,然后对此信号进行解调,就可恢复出发送的信息。而对干扰信号而言,由于不知道跳频频率的变化规律,与本地的频率合成器产生的频率不相关,因此,不能进入混频器后面的中频通道,不能对跳频系统形成干扰,这样就达到了抗干扰的目的。

下载DE34基站典型跳频故障分析word格式文档
下载DE34基站典型跳频故障分析.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    基站故障处理经验

    基站频繁闪断的传输侧处理方法 举例:乌鲁木齐城域网兵团医院频繁出现闪断,造成小区退服,每次闪断时间为1.5-1.6分钟 ,小区退服时传输网管侧无任何告警。 T1处理建议:查询乌鲁木齐......

    基站故障处理规范

    基站故障处理规范 为保证基站在故障出现后能够及时处理,全面提升网络用户的感知度及降低基站覆盖投诉问题,特制定相关故障处理规范: 一、基站停电 1、在接到基站停电工单后,先......

    移动通信基站故障浅谈

    移动通信基站故障浅谈移动通信系统中的基站主要负责与无线有关的各种功能,为MS(移动台)提供接入系统的UM接口,直接和MS通过无线相连接,系统中基站发生故障对整个移动网的影响是很......

    基站故障处理(5篇)

    基站故障处理 BTS:Base Transceiver Station BTS全名为:Base Transceiver Station,中文为基站收发台。 BTS的功能: BTS主要分为基带单元、载频单元和控制单元三部分 BTS受控......

    电力系统继电保护典型故障分析

    电力系统继电保护典型故障分析 案例11 施土留下隐患,值班员误碰电缆断面线路跳闸 事故简况:1989年2月16日,绥化电业局220kV绥化一次变电所值班员清扫卫生中,见习值班员齐××在......

    基站典型告警分析报告7767

    告警编号: 7767 告警内容: BCCH MISSING 公共广播信道丢失 告警描述: BTS小区公共广播信道BCCH丢失,导致BTS发生中断,该基站下的用户业务全部中断 触发原因:1、基站板件或软件故......

    基站典型告警分析报告7705(本站推荐)

    告警编号: 7705 告警内容: LAPD FAILURE LAPD故障 告警描述: TRX的LAPD链路的告警 触发原因: 1、TRX故障 2、TRX 连线故障 3、传输闪断 4、BCSU的插板或单元故障 5、BSC中关......

    基站典型告警分析报告7706

    告警编号: 7706 告警内容: BTS O&M LINK FAILURE 基站的O&M链路处于未运行状态 告警描述: 基站的O&M链路处于未运行状态,会引起基站中断 触发原因: 1.传输中断; 影响KPI:用户感知:派......