课题 1.7 近似数(写写帮推荐)

时间:2019-05-13 01:30:59下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《课题 1.7 近似数(写写帮推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《课题 1.7 近似数(写写帮推荐)》。

第一篇:课题 1.7 近似数(写写帮推荐)

年级:七年级学科:数学时间:9.25主备:陈兴彬审核:

课题

1.7

近似数

一、教学目标:

(一)知识与能力:

了解近似数和有效数字的概念

(二)过程与方法:

能按要求取近似数和保留有效数字

(三)情感态度与价值观:

体会近似数的意义及在生活中的作用.二、教学重点:

能按要求取近似数和有效数字.三、教学难点:

有效数字概念的理解.四、教学准备:

学生:收集有关数据;老师:多媒体课件

五、教学过程:

(一)设置情境引入课题

1、据自己已有的生活经验,观察身边熟悉的事物,收集一些数据(班班通显示)

(1)我班有

名学生,名男生,女生.(2)我班教室约为

平方米.(3)我的体重约为

公斤,我的身高约为

厘米(4)中国大约有

亿人口.2、在这些数据中,哪些数是与实际相接近的?哪些数与实际完合符合的?

3、与实际接近的数就是我们今天要学的近似数.(二)小组合作分析问题

1、教师提出问题:生活中哪些地方用到近似数? 举例:

(1)2000年第一次人口普查表明,我国的人口总数为12.9533亿.(2)某词典共1234页.(3)我们年级有97人,买门票需要800元.等 上面的数据,哪些是精确的,哪些是近似的?

2、举例说明生活中哪些数据是精确的,哪些数据是近似的.(三)探究新知

教师引导学生:近似数与准确数的接近程序,可以用精确度来表示.例如,某天约有500人参加会议,500是精确到百位的近似数,它与准确数513相差为13.数学课本的宽度值为18.4 cm,18.43cm都是近似数,18cm是精确到个位的近似数,18.4cm是精确到十分位。

近似值与它的准确值的差,叫做误差。即

误差=近似值-准确值

(四)例题讲解

1、十一期间,某商场准备对商品作打8折(8)促销。一种原价为348元的微波炉,10打折后,如果要求精确到元,定价是多少?如果要求精确到10元,定价又是多少?

解 这种微波炉打8折后的价格为:348×

8=278.4(元)10要求精确到元的定价为278元;精确到10元的定价为280元。

2、据2010年上海世博会官方统计,2010年5月1日到10月31日期间,共有7308.44万人次入园参观,求每天的平均入园人数(精确到0.01万人)

解 从5元1日到10月31日共有184天,所以每天的平均入园人数为

7308.44÷184≈39.719≈39.72(万人)。

3、下列由四舍五入法得到的近似数,各精确到哪一位?(1)48.3

(2)

0.03086

(3)2.40万

(4)6.5×10 解、(1)48.3,精确到十分位。

(2)0.03086,精确到十万分位。

(3)2.40为,精确到百位。

4(4)

6.5×10,精确到千位。

(四)巩固练习

1、让学生思考:近似数1.8和1.80一样吗?为什么?可组织学生讨论.2、讨论后反馈:(1)精确度不同;(2)有效数字不同.3、做一做:教科书练习,可请四位同学到黑板上板演,并由其他学生点评.4、补充例题:据中国统计信息网公布的2000年中国第五次人口普查资料表明,我国的人口总数为1295330000人,请按要求分别取这个数的近似数。(1)精确到百万位;

(2)精确到千万位(3)

精确到亿位;

(4)精确到十亿位(五)课堂小结

通过今天的这堂课的学习,你得到了哪些收获(六)布置作业

1、必做题:习题1.7 的第2、3题

2、选做题:用四舍五入法按要求取近似值:(1)0.2045(保留两个有效数字)(2)0.785(精确到百分位)(3)75 436(精确到百位)

教学反思:

第二篇:1.7近似数教学设计

七年级数学教学设计

课题:近似数

第课时

设计人李静静审核人李中锋执教人教学预设时间43min

一、教材分析、学情分析

教材分析:前面学习了科学记数法,本节近似数,还有精确度的确定,按照要求写出一个数的精确度,对以后的学习大有帮助。

学情分析:与科学记数法联系,会求一个用科学记数法的数的精确度。

二、学习目标:

1.了解近似数的概念。

2.会判断一个数是不是近似数。3.会确定一个数的精确度。

三、学习“三点”:

教学重点:掌握近似数的概念。

教学难点:判断一个数是不是近似数。易错点:精确度的确定。

四、教学过程:

(一)温故导新

1.用科学记数法表示下列各数。

(1)6400000(2)-260000(3)-20370000 2.下列用科学记数法表示的数,把原数写出来。(1)-3.06107(2)-3.002106 生:写在草稿本上 师:巡视指导

(二)指导自学

指导自学一:

生:预习教材P45-46至第四段,并将P45操作的问题写在草稿本上。师:巡视指导 指导自学二:

生:预习教材P46第五段至P47练习题的上面 师:巡视指导

(三)自主合作、探究新知

一、师:举出是精确值与近似值的例子 生:小组讨论,举手回答

师:什么是准确数?什么是近似数?

生:举手回答

师:准确值是与实际情况完全吻合的数,近似值是与实际数值很接近的数. 师:什么是误差?怎么表示?误差的大小和正负? 生:点名回答

师:误差=近似值-准确值,误差可能是正数也可能是负数,误差的绝对值越小,近似值就越接近准确值,也就是准确程度越高。

(四)点拨拓展

二、师:把你觉得最重要的一句话画出来 生:画出

师:什么是精确度?一般如何表示? 生:小组内交流,报告回答

师:近似数与准确数的接近程度可以用精确度表示(按四舍五入保留小数)师:点拨例3(3)2.40万=24000,2.40万的末位上的数字0位于百位,即精确到百位。

(五)强化训练(作业)

1.下列由四舍五入法得到的近似数,各精确到哪一位?

(1)54.8;(2)0.00204;(3)3.6万.

解:(1)54.8,精确到十分位;(2)0.00204,精确到十万分位;(3)3.6万,精确到千位.

生:每组三名同学写到各自的黑板上,其他同学写在练习本上 师:巡视指导

2.用四舍五入法,按括号里的要求对下列各数取近似值:

(1)0.65148(精确到千分位);(2)1.5673(精确到0.01);(3)0.03097(精确到0.0001);(4)75460(精确到万位);(5)90990(精确到千位).

解:(1)0.65148≈0.651;(2)1.5673≈1.57;(3)0.03097≈0.0310;(4)75460≈8×104;(5)90990≈9.1×104.生:每组五名同学写到各自的黑板上,其他同学写在练习本上 师:巡视指导

(六)归纳总结:

生:小组讨论,各组长发言总结 师:补充总结

1.准确值是与实际情况完全吻合的数,近似值是与实际数值很接近的数。一般测量得到的数都是近似数.

2.一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。近似数精确到哪一位,只需看这个数的最末一位在原数的哪一位。

五、教后反思:

第三篇:《近似数》教案

设计理念:

新课程标准指出:要注重学生经历观察、操作、推理、想象等探索过程中形成的能力,使学生在理解知识的发生过程中,主动建构自己的知识体系。针对本节课题学习内容的现实性,我是这样设计的。

1.国庆60周年情境引入,通过分类感受精确数和近似数。分类思想是贯穿义务教育阶段的重要思想。我通过分类,帮助学生在比较和辨别中体会哪些是实际的、精确的,哪些数是模糊、大约的,从而认识精确数和近似数;又是通过列举活动,深化理解,了解近似数在实际中生活中的广泛应用。

2.借助数线,直观感受四舍五入法求近似数的道理。首先,结合数线图,分析18000平方米称为近2万平方米的原因。数与形结合,建立直观表象。然后丰富拓展,归纳1万多的近似数在什么情况下是1万,在什么情况下是2万。理解四舍和五入规定的合理性,了解四舍五入法的道理。

3.合作学习,探究四舍五入法求一个数的近似数。这部分是教学的难点,分为两个层次。一是同桌合作学习:在本环节中,直接选择一个大一点的六位数,既尊重学生的知识基础,加深了数学理解,又在同桌合作突破难点的同时,发展学生的思维,培养了合作学习的能力。二是集体学习:探究把233482四舍五入到不同数位的近似数,归纳推理得出用四舍五入法求近似数的方法。

4.练习巩固,个性化讲解促进个别化指导。从数的分类和求近似数两个方面进行练习巩固,并通过个别指导,生生交流、师生交流,帮助学生解决出现的问题,逐步清晰所学知识,最终形成技能,促进不同学生得到不同的发展。

教材分析:

近似数是北师大版小学数学第七册第一单元认识更大的数中的第五课。这部分内容既丰富了对大数的认识,又是对后续学习除法试商的基础。另外,近似数在生活中有着广泛的应用,当很难得到或不需要得到精确数,或是用大数描述事物时,人们经常会选择近似数。因此,无论在生活中还是在知识的衔接上近似数都显得至关重要。

学生收到前面计算教学中估算的影响,以及学生自身的经验积累,很多学生在课前已经可以凭借数感找出万以内数的近似数,也有一部分学生了解甚至可以用四舍五入法来求大数的近似数。但是大部分学生对四舍五入法只是一个模糊的认识,对于四舍五入法具体是什么,它的道理是什么,什么情况下运用四舍五入法都不是十分清楚。

四年级的学生已经进入了小学中年级段,具有一定的学习经验和合作学习的能力。

教学目标:

1.通过阅读与分析,了解近似数和精确数的意义,感受近似数和精确数在现实生活中的应用。

2.借助数线,较直观地感知四舍五入法求近似数的道理,知道近似数的书写格式,培养学生的推理能力。

3.经历探索求近似数的过程,会用四舍五入法求一个数的近似数,培养数感。

教学重点:

经历探索求近似数的过程,会用四舍五入法求一个数的近似数。

教学难点:

经历探索求近似数的过程。

教学方法:

合作学习法 分析归纳法

教学策略:

小组合作 情境创设

教学过程:

一、情境创设,分类感受精确数和近似数。

1.观看一段国庆60周年阅兵视频,说一说有什么感受?

师:这么大的场面中一定蕴涵着许多数学问题,今天我们就一起研究这些数学问题。

2.课件出示整理的一段文字,让学生默读其中的数字两遍,初步感知数据。

3.仔细观察这些数,有没有什么共同特点,能不能把它们分一分类?

组织学生讨论,学生可能会按数据的大小来分,一些按单位分,如60,169,56,66都是以个为单位的,20万、2万是以万为单位的。或者学生将60、169、56分为一类,66、20万、2万分为一类。

师:为什么将60、169、56分为一类,66、20万、2万分为一类呢?它们有什么共同的特点呢?

学生用自己的语言说一说。可能会说是准确的数,估出来的数。

师:是的,在数学上,像60、169、56这样准确的数、不多不少正好的数,是精确数;而66、20万、2万是大概的,大约的,差不多的,与实际数接近的数,是近似数。

4.读一读以下的数据,哪些是精确数,哪些是近似数吗?

小明身高130,2cm,就说约130cm;小红从家里到学校走了395米,就说大约走了400米。

5.你能说说生活中哪些事物的数量一般用精确数来表示,哪些事物的数量一般用近似数来表示?了解近似数的作用。

师:有些情况下,我们没有必要用准确的数据来描述,只要知道一定的范围就足够了,这时用近似数来表示就比较方便。看来近似数在生活中的应用还是相当广泛的。

【设计意图:新课标指出,数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考。国庆60周年情境引入,出示一些感性材料,通过分类,帮助学生在比较和辨别中体会哪些是实际的、精确的,哪些数是模糊、大约的,从而认识精确数和近似数;又通过列举活动,深化理解,了解近似数在实际中生活中的广泛应用。】

二、合作学习,自主探究。

(一)借助数线,直观感受四舍五入法求近似数的道理。

1.师:巨幅国画《江山如此多娇》的实际面积是18000平方米,但报道中称近2万平方米,这里的2万是如何得到的?

同桌交流,指名说说想法,学生可能会说18000接近2万,所以用2万来表示。

2.结合直观的数线图,分析18000平方米称为近2万平方米的原因。

师:18000介于整万数1万和2万之间,由于18000千位上是8,所以可以把千位上8直接去掉变成0后向万位进1,就得到了近似数2万。

介绍18000约等于2万,用≈表示,写作:18000≈2万全班读一读。

3.在数线上标出11000,12000,13000,14000,15000,16000,17000,19000这几个数,请学生尝试分别说出它们的近似数及想法。

师:15000这个数约等于多少呢?

学生可能觉得1万可以,2万也可以,因外它刚好在中间。

师:15000离1万和离2万的距离是一样的,但为了方便记录,我们认为规定15000≈2万。

课件上将约等于1万和约等于2万的数进行对比,让学生观察,分析归纳。

师:请同学们对比两组数据,仔细观察,说说你有什么发现,能得到什么结论?请同桌互相讨论,教师巡视指导了解情况。

学生汇报交流,学生可能会发现以15000为分界线,11000,12000,13000,14000接近1万,16000,17000,18000,19000接近2万。

教师引导学生观察千万上的数,当千位上的数是1、2、3、4时,近似数是1万,当千位上的数是5、6、7、8、9时,近似数是2万。

教师借机在黑板上板书:0、1、2、3、4 舍;5、6、7、8、9 入,介绍四舍五入法。

【设计意图:结合数线图,分析18000平方米称为近2万平方米的原因。数与形结合,将四舍五入的本质清晰地展现出来,培养学生的数感。】

(二)合作学习,探究四舍五入法求一个数的近似数。

1.参加国庆阅兵的精确人数是233482人,在下图中找到这个数的大致位置,说一说约20万人,这个数是怎样得到的?

合作要求:1.同桌2人一起学习,共同完成学习任务。2.学习时,每人都要说一说自己的想法,并将讨论的结果填在学习卡上。3.组织简单、清晰的语言准备全班汇报。

教师巡视,了解小组讨论的情况,并对有困难的小组给予指导。

2.全班交流。生可能想法:在数线图上标出,发现233482接近20万,;或者233482比25000小,所以近似于20万;直接用四舍五入法,看万位上的数是3,小于5,所以直接把十万后面的尾数33482舍去变成5个0,得到近似数20万。

请多组的学生表达自己的想法,只要说得有道理,给予鼓励。

3.教师小结:四舍五入到十万位,关键看万位。

4.如果将233482四舍五人到万位、千位、百位、十位,近似数分别是多少,怎样得到的?小组内讨论,再全班交流,帮助直观感知求近似数的方法。

5.引导学生初步概括方法,用自己的语言说说:怎样用四舍五入法求近似数?

【设计意图:新课标指出,学生应当有足够的时间与空间经历探索的过程,引导学生独立思考、主动探索、合作交流,使学生掌握求近似数的方法,培养学生的合作能力,发展学生的思维。】

三、巩固练习

1.读一读下面的数据,哪些是精确数,哪些是近似数?(教材第11页练一练第一题)

鼓励学生通过自主阅读与分析,找出精确数和近似数,加深认识,并感受到近似数在现实生活中的广泛应用。

2.华山是我国著名的五岳之一,海拔约2155米,在下图上标一标,四舍五入到百位大约是多少米?

学生独立完成,有些学生在数线上找点时会遇到困难,教师适时指导,帮助学生通过数线进一步感受四舍五入到百位,要看十位上的数。

3.按要求填表。

提醒学生认真看要求,仔细数数位。特别对29957四舍五入到百位、千位、万位重点指导。

【设计意图:巩固练习是帮助学生掌握新知、形成技能、发展智力培养能力的重要手段。通过三道练习题,加深对近似数的认识,感受近似数在现实生活中的广泛应用,并能用所学的四舍五入法求近似数。】

四、课堂总结

这节课你学到了什么?请学生说说这节课的收获。

师:这节课我们经历了探索求近似数的过程,会用四舍五入法求一个数的近似数,同时知道近似数的书写格式。希望同学们能留意生活,去感受近似数在生活中的广泛应用。

板书设计:

近似数0、1、2、3、4 舍 18000≈20000

四舍五入法 5、6、7、8、9 入 233482≈200000

第四篇:近似数教案

七年级上册数学

1.5.3 《近似数》教案

上课班级:七年级2班 讲授:刘 娟

教学目标

1.知识与技能

(1)给了一个近似数,你能说出它精确到哪一位.

(2)给了一个数,会按照精确到哪一位或保留几个小数的要求,•四舍五入取近似数.

2.过程与方法

从测量引入近似数,使学生体会近似数的意义和生活中的应用.

3.情感态度与价值观

培养学生认真细致的学习态度,合作交流的意识. 重、难点与关键

1.重点:近似数,精确度的概念.

2.难点:由给出的近似数求其精确度.

3.关键:理解近似数中小数点末尾的零的意义. 教学方法:

通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极思考,教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下的一种自主求知的活动过程,在解决问题的过程中获得新知。教学过程

一、创设情境,提出问题

在日常生活和生产实际中,我们接触到很多这样的数.例如:对于参加同一个会议的人数,有两种报道,•一种报道说:“会议秘书处宣布,•参加今天会议的有513人”.这里数字513确切地反映了实际人数,它是一个准确数,另一种报道说:“约有500人参加了今天的会议”,500这个数只能接近实际人数,但与实际人数还有差别,它是一个近似数.

问题:在一次体检中,测得甲的身高是1.72m,测得乙的身高大约是l.7m.(1)你能知道甲和乙的确切身高吗?(2)甲的身高是一个准确的数,乙的身高不是一个准确的数,那么你知道乙的身高是一个什么数吗?

二、探索新知,解决问题

1、得出概念

生活中有的量很难或没有必要用准确数表示,而是用一个有理数近似地表示出来,我们称这个有理数为这个量的近似数。如长江的长约为6300㎞,这里的6300㎞就是近似数。因此,我们把接近准确数而不等于准确数的数,叫做这个数的近似数。

近似数与准确数的接近程度,用精确度表示。你还能举出一些日常遇到的近似数吗?

2、尝试解决问题

问题:回顾四舍五入法取近似值

如:3(精确到个位)

3.1(精确到0.1或叫做精确到十分位或叫做保留一位小数)

3.14(精确到 或叫做精确到 或叫做保留 位小数)

3.142(精确到 位,或叫做精确到 或叫做保留 位小数)

3.1416(精确到 位,或叫做精确到 或叫做保留 位小数)

一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,保留两位小数,精确到0.01,精确到百分位等说法的含义相同。

二、例题讲解

例1:下列由四舍五入得到的近似数,它们精确到哪一位?

①0.01020 ②1.20 ③0.45060 例2:(课本P46例6)按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.0158(精确到0.001)(2)304.35(精确到个位)(3)1.804(精确到0.1)(4)1.804(精确到0.01)注意近似数1.8与1.80的区别。

三、拓展延伸

对于由四舍五入取得的近似数1.30万与1.30×104,它们分别精确到哪一位?它们的精确度相同吗?(提示:先把近似数还原成大数)结论:(1)对于a×10n的精确度由还原后的数字中a的末位数字所在的数位决定;

(2)对于含有文字单位的近似值,精确度也是由还原后的数字中近似数的末位数字所在的位数决定的。)

四、巩固训练,熟练技能

1、教材第46练习(直接做到课本上)

2、用四舍五入法对下列各数取近似数

①0.00356(精确到万分位)②1.8935(精确到0.001)③61.251(保留两位小数)④5.402亿(精确到百万位)

[提示:先还原成大数再求近似数]

3、下列由四舍五入得来的近似数,各精确到哪一位?

①1.50万 ②2.30×104 ③36亿

4、在2008年北京奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为4.581亿帕的钢材,4.581亿帕精确到百万位的近似数为 亿帕

五、小结

你的收获是什么?

六、作业

习题1.5第6、10题

七、课后反思

第五篇:二年级近似数

求近似数、四舍五入法(人教版二年级教案设计)小学数学教学资源网 → 数学教案 → 求近似数、四舍五入法(人教版二年级教案设计)2009-11-01

?教学目标

(一)通过学生熟悉的事物来认识求近似数的实用性.(二)使学生掌握四舍五入法求一个数的近似数的方法.(三)培养学生分析、判断、解决实际问题的能力. 教学重点和难点

重点:使学生掌握用四舍五入法求一个数的近似数的方法. 难点:掌握近似数的判断方法. 教学过程设计(一)复习准备

教师通过启发谈话,即从学生生活贴近的事物中引出近似数.

在日常生活中,描述一些事物的数量有时不一定要说出它们的准确数量,只要知道它们的大概是多少就可以了,因此不用准确数表示,而是用一个与准确数比较接近的整

十、整百、整千数表示.如:我们国家的领土大约960万平方千米;我国人口大约12亿;我们学校有学生大约1200人等等.这样做比较方便、记忆容易、计算简单.(二)学习新课 出示例题:

同学们浇树.浇了206棵松树,浇了284棵杨树.求这两个数的近似数大约是几百? 首先引导学生观察、思考:

206接近哪个整百数?(接近200)206≈200用“≈”连接,“≈”叫做约等号.读作:206约等于200. 讨论下面几个数的近似数大约是几百?说一说你是怎样想的?怎样求的? 314≈300(十位上的1不满5)325≈300(十位上的2不满5)336≈300(十位上的3不满5)347≈300(十位上的4不满5)那么我们进一步讨论284接近哪个整百数?为什么?怎样想的?

284≈300(十位上的8满5,把十位、个位上的数改写成0,向百位进1)继续进行小组讨论:395,486,573,264,?358的数大约是几百?

395≈400

?486≈500

?573≈600 264≈300

?358≈400 根据同学讨论的情况,归纳小结:

要求三位数的近似数,关键是看它十位上的数是不是满5,(也就是4或3,2,1)就把位和个位上的数去掉写成0.如果满5,(也就是5或6,7,8,9)就把十位和个位上的数改写成0,同时向百位进1.这样的方法我们称作“四舍五入”法.(三)巩固反馈

1.说出下面各数的近似数.(投影)(1)386≈400

?(2)247≈200 579≈600

?739≈700 462≈500

?305≈300 758≈800

?428≈400 观察比较两组题的相同点与不同点.(小组讨论)相同点:两组题都是求三位数的近似数.

不同点:第(1)组各数十位上的数都满5,(大于或等于5),所以都把十位和个位上的数改写成0,同时向百位进1.第(2)组各数十位上的数都不满5,(小于5)就把十位和个位上的数字舍掉改写成0.

请同学们强调:把一个三位数改写成整百的近似数关键是什么? 关键是看十位上的数是否满5,来决定四舍五入.

那么,我们一起来研究一下,如何求四位数的近似数?关键要看哪一位上的数呢? 出示:6250大约是几千? 6250≈6000 6250百位上是2(小于5),就把百位后面的尾数舍掉,改写成0. 2.做一做.(投影)求下面各数的近似数.(独立写在本上)3845≈4000

?2489≈2000 5290≈5000

?4562≈5000 2908≈3000

?8397≈8000 订正时请同学说一说是怎样想的?(求一个四位数的近似数,要看百位上的数是否满5,百位上的数不满5,直接把千位后面的尾数舍掉改写成0.如果百位上的数满5,把千位后面的尾数改写成0,同时还要把百位上的数向它的前一位进1)3.求下面各数的近似数. ? 根据学生掌握情况教师总结:

求万以内数的近似数,要根据要求省略这个数的十位、百位或千位后面的尾数.如果尾数的最高位不满5,就直接把尾数舍去,改写成0;如果尾数的最高位满5,把尾数改写成0后,还要向它的前一位进1. 作业:看书第20、21页. 小资料

〔近似数和四舍五入法〕

有关近似数的知识在实际生活、应用中经常遇到.在多位数读写之后,教学近似数和四舍五入法,使学生初步理解近似数的意义与截取近似数的方法,可以进一步加深学生对数的概念的理解,为以后学习小数取近似值做准备.

取近似数的时候,省略哪一位后面的尾数要根据实际需要,按一定的规则进行.考虑到学生的接受能力,在小学主要讲常用的把一个多位数四舍五入到“万位”或“亿位”的方法.例如751872和754920,755830和758850,要省略万后面的尾数.751872和754920,尾数最高位千位上是1和4,不足一万的一半,把尾数舍去,改写成0.751872≈750000,754920≈750000.755830和758850,尾数最高位千位上是5和8,等于或大于一万的一半,把尾数改写成0后,要向它的前一位进1.755830≈760000,758850≈760000.省略亿位后面的尾数的方法可以依此类推. 〔四舍五入法〕

这是取近似数最常用的方法.具体做法是:把数按需要截取指定数位后,如果去掉的部分最高位上的数是4或者比4小,就把它舍去(称为“四舍”),这样得到的近似数值叫不足近似值;如果去掉的部分最高位上的数是5或者比5大,就在保留部分的最后一位数上加1(称为“五入”),这样得到的近似值叫过剩近似值. 例如:20÷7=2.85714„„ 用四舍五入法使得数保留三位小数,得 20÷7≈2.857

?(四舍)用四舍五入法使得数保留两位小数,得 20÷7≈2.86

?(五入)课堂教学设计说明

有关近似数的概念是学生第一次接触,但又不生疏,因为在日常生活中会经常遇到,根据这一实际情况,教师就从学生身边熟悉的事物入手,通过一些实例使学生体会到用一个与准确数相接近的整

十、整百、整千的数来表示一些事物的数量很方便,记忆容易,计算简单,这样学生既认识到近似数的实用性,又提高了学生的学习兴趣,使学生感到很容易就掌握了这一新知识. 教学例9时,通过让学生观察思考206接近哪个整百数.由于数字比较简单学生容易说出206接近200,情绪自然很高,老师接着出示314,325,336,347这几个数让学生充分讨论.使学生自己悟出“四舍”的方法,至于“五入”学生自然是自己获取.在教师引导下,学生通过观察,分析,讨论,判断掌握了如何用“四舍五入”法求三位数的近似数的方法.学生的求知欲望激发起来了,在这个基础上再来研究如何求四位数的近似数,这是进一步巩固求一个数的近似数的关键.通过一定量的练习,使学生真正理解和掌握求近似数的方法. ?

下载课题 1.7  近似数(写写帮推荐)word格式文档
下载课题 1.7 近似数(写写帮推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    近似数教案

    1.5.3近似数 教学目标: 1、了解近似数和有效数字的概念。 2、能按要求取近似数和保留有效数字。 3、体会近似数的意义及在生活中的应用。 教学重点:能按要求取近似数 教学难......

    近似数教案

    1.7 近似数(总第课时) 执笔人:孙方玉 教学目标 知识与技能: 1.了解近似数的概念。 2.能按要求取近似数。 过程与方法: 经历对一个数取近似值的过程,体会近似数的意义及在生活中的......

    近似数教案

    1.5.3近似数 教学目标: 知识与技能:了解近似数的概念,并按要求取近似数。 过程与方法:经历对实际问题的探究过程,体会用近似数字刻画现实问题的思想。 情感与态度:在数学学习中获......

    近似数测试题

    1.数学课上老师给出了下面的数据,精确的是(D)A.某战争每月耗费10亿美元B.地球上煤储量为5万亿吨以上C.人的大脑约有1×1010个细胞D.七年级某班有51个人2.近似数1.40所表示的......

    近似数教案

    近似数 教学内容:小学数学苏教版四年级上册 教学目标: 1、让学生知道近似数的含义,并会根据要求用“四舍五入”的方法省略一个数的尾数,写出它的近似数。 2、在认识近似数、理解......

    七年级数学上册 1.7近似数教学设计 (新版)沪科版

    近似数 教学背景 1、学生:初中七年级 2、学科:初中数学 3、内容:《近似数》 教学目标 知识与技能: 了解近似数的概念。 能按要求取近似数。 过程与方法: 通过近似数的学习,体会近......

    近似数教学设计

    《近似数》教学反思 去年教学《近似数》,批阅作业时那个头痛至今都忘不了。一是当时对这节内容没有教学过,心中总是没有一定的“自信”;二是又感觉不会很难,不就是用个“四舍五......

    近似数教学设计

    一、导入新课 同学们,你们注意过没有,我们在听新闻、看电视时,会听到或看到很多数据,这些数据有些是精确数,有些是近似数。我记录了这样一条信息,请你们帮助我看看,哪些是精确数,哪......