小学数学常见数学思想方法归纳与整理

时间:2019-05-13 19:53:40下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小学数学常见数学思想方法归纳与整理》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小学数学常见数学思想方法归纳与整理》。

第一篇:小学数学常见数学思想方法归纳与整理

小学数学常见数学思想方法归纳与整理

1、对应思想方法

对应是人们对两个集合元素之间的联系的一种思想方法。小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线(数轴)上的点与表示具体大小的数的一一对应,又如分数应用题中一个具体数量与一个抽象分数(分率)的对应等。对应思想也是解答一般应用题的常见方法。

2、转化思想方法:

这是解决数学问题的重要策略。是由一种形式变换成另一种形式的思想方法。如几何形体的等积变换、解方程的同解变换、公式的变形等。在计算中也常常用到转化,如甲÷乙(零除外)=甲×,又如除数是小数的除法可以转化成除数是整数的除法来计算。在解应用题时,常常对条件或问题进行转化。通过转化达到化难为易、化新为旧、化繁为简、化整为零、化曲为直等。

3.符号化思想方法:

数学的思维离不开符号的形式(图、表),这样可大大地简化和加速思维的进程。符号化语言是数学高度抽象的要求。如定律a.b=b.a,公式S=vt等都是用字母表示数和量的一般规律,而运算的本身就是符号化的语言。所以说,符号化思想方法是数学信息的载体,也是人们进行定量分析和系统分析的一种载体。

4、分类思想方法:

分类的思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如对自然数的分类,若按能否被2整除可分为奇数和偶数,若按约数的个数分则可分为质数、合数和1。又如三角形既可按角分,也可按边分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性。数学知识的分类有助于学生对知识的梳理和建构。

5、比较思想方法

比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

6、类比思想方法 类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。

7、代换思想方法:

它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。

8、假设思想方法

假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

9、可逆思想方法:

它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。

10、化归思想方法:

把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。

11、集合思想方法:

集合思想是近代数学的最基本思想,许多重要的数学分支,如数理逻辑、实变函数、概率统计等都建立在集合理论的基础上。小学数学采用直观手段,利用图形和实物渗透集合的思想。如在数的认识时出现韦恩图,在讲述公约数和公倍数时孕伏了交集的思想方法。

12、数形结合思想方法:

数和形是数学研究的两个主要对象,数离不开形,形离不开数。一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化;另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。

13、统计思想方法:

数据处理方法随着现代化的发展进程,越来越深入到社会生活的各个领域。小学数学中的统计图表是一些最基本的统计方法。求平均数应用题就是体现出数据处理的思想方法。数学课程标准在学习内容制订中就十分强调要发展学生的统计观念。

14、极限思想方法:

事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。这个变化过程中存在一个“关节点”,在小学数学讲述圆的周长、面积知识时,就以“极限”为“关节点”。“化曲为直”地从有限中认识无限,从近似中认识精确,从量变中认识质变。

15、有序的思想方法:

思维要有序,即要按照一定的顺序,有条理地,全面地观察和思考问题。如果思维无序,观察或思考时杂乱无章,就容易造成思维的重复或遗漏。例15

左图中有几个三角形?

16、整体思想方法:

对数学问题的观察和分析应从宏观和大处着手,整体把握,化零为整往往不失为一种更便捷更省时的方法。

17、函数的思想方法

恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。

18、运动的思想方法:

运动是永恒的,静止是相对的。用运动的、变化的眼光看事物,往往最能把握事物间的本质联系。如几何中的点到线,线到面,面到体,变化的根本原因就在一个“动”字。

19、数学模型的思想方法:

所谓数学模型,是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析、综合概括等思维过程,达到简化和假设。它是把生活中实际问题转化为数学问题(模型)的一种思想方法。培养学生用数学的眼光去认识和处理周围事物或数学问题,乃数学教学的最高境界,也是学生高数学素养所追求的目标。

20、变中抓不变的思想方法:

在纷繁复杂的变化中如何把握数量关系,抓“不变量”作为突破口,往往问题就可迎刃而解。

除了以上介绍的这些主要思想方法外,小学数学还有其它的一些思想方法,如倒推法、类比法、列举法、假定法、实验法等。

第二篇:数学思想方法与应用

沈括运粮故事浅析

田小宽

(数学与统计学学院 数学与应用数学 2010212449)

【摘要】:沈括在其著作《梦溪笔谈》中,涉及了军队运粮的有关问题。他把每人背的粮食,每天的食量作为已知定值,将士兵作战时不缺粮食的天数和需要的运量人数作为未知数,通过这样一个关系来说明军队作战乃是国之大事

【关键词】:运粮 运筹 军事

【引言】凡师行,因粮于敌,最为急务。运粮不但多费,而势难行远。予尝计之,人负米六斗,卒自携五日干粮,人饷一卒,一去可十八日;米六斗,人食日二升,二人食之,十八日尽;若计复回,只可进九日。二人饷一卒,一去可二十六日;(米一石二斗,三人食日六升,八日则一夫所负已尽,给六日粮遣回,后十八日,二人食日四或并粮)。叵计复回,止可进十三日。(前八日日食六升,后五日并回程,日食四升并粮)三人饷一卒,一去可三十一日,米一石八斗,前六日半四人食日八升,减一夫,给四日粮;十七日三人食日六升,又减一夫,给九日粮;后十八日,二人食日四升并粮。计复回止可进十六日,(前六日半日食八升,中七日日食六升,后十一日并回程日食四升并粮)。三人饷一卒,极矣。若兴师十万,辎重三之一,止得驻战之卒七万人,已用三十万人运粮,此外难复加矣。(放回运夫须有援卒,缘运行死亡疾病,人数稍减,且以所减之食,备援卒所费)。运粮之法,人负六斗,此以总数率之也。

一、军队运粮问题与运筹学联系

军队运粮需要注意许多的变量,并且在事先确定了一些量之后,可以确定另外的比较重要的量最合适的数值,比如:当每人背的粮食和食量、前往作战地所需的天数、作战人数等确定之后可以得到数学模型下的理想的作战的最长天数与运粮人数之间的一个关系式,即之间的一些线性关系,进而在作战之前可以把运粮的大致工作安排妥当,所以说兵马未动粮草先行。可见其是运筹学所研究的问题之一。

二、结合沈括著作《梦溪笔谈》中运粮篇

先设定以下的量:士兵人数已知,x个农夫饷一卒,其他量如同上文沈括运粮问题内。

在沈括《梦溪笔谈》运粮篇中,知道当两人饷一卒时,不计往返则是二十六天,三人饷一卒时不计往返可行三十一日,则此时足够到达作战地点,当四人饷一卒时,不计往返可行三十四日,也能到达地点,并且此时若最后一批农夫不回,可支撑士兵作战四天。具体计算如下:

1.一人饷一卒:设可坚持x天则有:2x+2(x-5)=60,x取整得18天

2.二人饷一卒:设第一个农夫在a天后回,则有:6a+2(a-2)=60,则a=8,加上最后一农夫所背粮食可支撑18天,则18+8=26 3.三人饷一卒:设第一个在b天后回,第二个在第一个回了c天后回,则有:8b+2(b-2)=60,则b取整为6天。又有:6c+2(b+c-2)=60,则c取整得7天,加上最后一人可支撑的18天,则有:6+7+18=31天

4.四人饷一卒:设第一个农夫在a天后回,第二个农夫在第一个回b天后回,第三个在第二个回c天后回,则:10a+2(a-2)=60,a取整得5,8b+2(b+5-2)=60,b取整得6天,2(c+5+6-2)+6c=60,c取整得5天,加上最后的18天,则5+6+5+18=34 用相同的方法以此类推,我们可以求得五人、六人以及更多人饷一卒的行军的时间。到此时,我们乍一眼观察,上面的运筹学模型没有问题,可以把农夫人数无限制的演算下去,但是结合各个未知量的实际意义,我们知道a是一个不能小于2的量,因为由(a-2)的实际意义知a-2>0。而当又当x=14时,a=2,所以上面的运筹学模型只适用于农夫人数不大于14人时。若要继续计算下去从十五人饷一卒开始,每增加一人多走一天,而当x>29时,此时农夫的增加和第一个农夫支撑天数a的对应关系又变。对于上述证明如下:

2(x+1)a+2(a-2)=60

a=32/(x+2)经过检验,当x=14时,a=2;当x=30时,a=1,这时,我们发现,实际情况是当x=29时,a=1!所以得证。

另外,当农夫人数增多时,四舍五入的方法也不在适用,在上面的计算时我们得到的一些数字采用了四舍五入,其中四人饷一卒时,b=5.6,若要当做6天计算,我们可以看到要多吃3.2升,那么农夫要空腹三四天才能返回,但此时显然与上面方程矛盾,因此四舍五入应有限度。

有上述分析可知,解决这个运粮问题没有一个固定的运筹学模型,或者说这个数学模型应是分段的,而且每一段都是遵循线性规划模型的。

而且从上面分析,我们也应在四人饷一卒时应减去一天,即坚持33天。同样在三人饷一卒时不能取整的天数也都舍掉零头,这样的意义是农夫空腹返回的时间少于2天。

综上若要行军一月则至少需三人饷一卒,十万士兵就需要三十万农夫运粮,但古时作战士兵人数大多是在三十万以上的,著名的赤壁之战曹操号称百万大军,则需要三百万农夫。

由此可见古时两国交战是一件多么应该慎重的事,难怪真正懂得兵法人都说:兵者,国之大事,死生之地,存亡之道,不可不察也。甚至兵法圣典《孙子兵法》把它列在第一篇里的开头。由此也可见运筹学对于军事的重要贡献。【参考文献】

[1].刁在筠 刘桂真 宿洁 马建华

《运筹学》(2007年1月第三版)

高等教育出版社 第82页

[2].张俊杰 大众文艺出版社 北京 2009年7月第一版 第10页 《孙子兵法与三十六计》

第三篇:小学数学思想方法学习心得

《小学数学思想方法》学有所得

我们在老师的指导下着重学习了《小学数学教材概说》第二章的小学数学思想方法中的集合思想、对应思想、符号化思想、极限思想、统计思想、数学模型方法,并分析了这些思想方法在小学数学教材中的渗透。

通过在课堂上对小学数学思想方法的学习,我深刻地认识到学习并研究数学思想方法对于数学教学具有重大意义。首先,懂得数学思想方法有利于教师深刻地认识数学教学内容,正确把握教材体系,以较高的观点分析和处理小学教材。小学教材体系就两条主线:

一、数学知识;

二、数学思想。教师会分析教材,就能明确数学知识;而数学思想是必须掌握了它的方法才能明确为什么要这样写,才能从整体上、本质去理解教材,也才能科学、灵活地设计教学方法,提高课堂教学效率。其次,懂得数学思想方法有利于提高学生的数学素养,促进学生思维能力的培养。最后,有利于对学生进行美育渗透和辩证唯物主义的启蒙教育。

正是因为我意识到懂得数学思想方法对数学学习和教学具有重大意义,所以我利用课余时间学习了小学数学的其他思想方法:类比思想、转化思想、分类思想、代换思想、可逆思想、化归思想、整体思想、比较思想、假设思想、数形结合思想。

其中我对类比思想方法颇感兴趣,对它的了解比较深刻。类比思想是把某一或几个方面彼此一致的新旧事物放在一起相比较, 让学生由旧事物的已知属性推出或猜想新事物也具有相同或类似属性的一种逻辑推理方法, 它包含特殊到特殊, 也包含一般到一般。整个思维过程是以“联想”为前提;以“相似性”为向导;以提出“猜想”为使命;以发现“新规律”为目的。在小学数学课堂教学中渗透类比思想,通过以下几个方面实现:(1)渗透类比思想探究新知(2)渗透类比思想建构知识网络

(3)渗透类比思想激发创新思维(4)渗透类比思想加深对概念的理解。在运用类比方法时应注意以下几点。

(一)类比的结论具有或然性:或者正确,或者不正确,或者不完全正确,对类比的结论能进行辩证的处理。

(二)类比推理需要相当的引导,且学生容易为表面上相似的类比所误导,有位数学家于1992年提出几个克服类比障碍的方法:(1)由学生自己类比。(2)使用多种类比。(3)教师应明确指出类比推理可能失败之处。

(三)要想让学生掌握一些类比思维,作为一名小学数学教师应该做到以下几点:

1、教师应该从自身做起,先要使自己充实起来,这样才能将思想,方法逐渐渗透到学生的思维中,因此教师迫切需要学习和掌握以下知识:(1)补充综合性知识。从今后发展来看,知识也是日趋综合化,很多问题不是只用一门学科知识就能解决和回答的。老师必须在知识上融会贯通,才能更好的在课堂上启发引导学生,实现纵横类比。(2)挖掘教材中的潜在知识。有些知识书本没有明确给出要求,但是必要时要给予补充。例如:苏教版小学数学第六册第94-95页,这部分内容讲的虽是长方形面积,但是从教材中可以发现它隐含了简单的统计思想。教师教学时要注意挖掘这部分知识。

2、老师在教学过程中也要创设一种有培养创造性思维的教学情境。如采用开放式教学。

3、要培养学生的类比思维能力,首先要注意培养学生的归纳总结能力,只有概括出不同知识的相同或相似的性质,才能引导学生进行类比。古代学者韩愈提倡读书学习先要入书,后要出书,要先把书读厚,再把书读薄。这就是说要总结,要概括,要深入认识问题的精神实质。运用类比让学生去发现,去创造,让教学充满创新与活力。懂得了数学思想方法也意识到了它的重要性,那么在教学中,如何将这些方法渗透呢?经过思考我个人有几点看法:(1)提高渗透的自觉性,在知识的形成、发展过程中,渗透数学思想与方法;(2)把握渗透的可行性,在解题思路的探索中,揭示数学思想与方法;(3)丰富数学渗透的人文性,在问题解决方法的探索过程中,激活数学思想与方法;(4)注重渗透的反复性,在知识的总结归纳过程中,概括数学思想与方法。

以上是我在小学数学思想方法这一章学习之后的心得与思考,若有不妥的的地方还请老师指点迷津,谢谢啦!

第四篇:【读小学数学与数学思想方法有感

读《小学数学与数学思想方法》有感

贵州省乡村名师小学数学曹光林工作室:余其强

我读了小学数学与数学思想方法这本书,这本书主要讲了四个方面的内容:一是讲了抽象的数学思想,内容包括抽象思想、符号思想、分类思想、集合思想、变中不变思想、有限与无限思想。二是推理的数学思想,主要包括归纳推理、类比推理、演绎推理、转化思想、数集合思想、几何变换思想、极限思想、代换思想;三是与模型有关的数学思想,包括模型思想、方程思想、函数思想、优化思想、统计思想、随机思想;四是其它的数学思想,其中有数学美思想、分析和综合法、反证法、假设法、穷举法、数学思想的综合运用,这本书对我受益 很大,得到以下体会:

一数学思想在四基中占有重要的地位

数学思想、数学方法、数学思想方法近年来收到数学教育家界广泛关注,数学思想是对数学知识的本质理性认识,数学抽象思想、推理思想、模型思想、这三个基本思想分别对数学学科的建立、发展和应用起到了重要的着用,这三个思想演变、派出、发展出很多其它的较低层的数学思想,如分类思想、归纳思想、方程思想、函数思想等。所以我们在教学时,必须专研教材,学习教学新课标,找出每一节教材的数学思想,这样教师在教学时能找准重点和难点。能够有的放矢。

二 数学方法是数学解决问题的方法和手段

我们首先要理解数学思想和数学方法既有区别又有联系。数学思想是数学方法的进一步提炼和概括,数学思想的抽象概括程度要高一些,而数学方法的操作性更强一些。人们实现数学思想往往要依靠一定的数学方法,而人们选择数学方法又要以一定的数学思想为依据。数学的方法也是有层次的,基本的方法有演绎推理法、合情推理法、变量替换方法、等价变形的方法、分类讨论的方法等等,下一层的方法有分析法、综合法、穷举法、反证法、列表法、图像法等等。数学方法是数学的灵魂,要想学好数学,就要深入到数学灵魂之处。作为我们教师要根据每一节课的数学思想和学生年级,选择灵活的教育手段,这样能达到较好的教育效果。

三教师要不断提高专业素养和教学水平

2001年的义务教育阶段的数学课程改革已经非常重视数学方法,并在总体目标中明确提出:学生能够获得适应未来社会生活和进一步发展所必须的重要数学知识以及基本的数学思想和必要的应用技能,这一总目标贯穿于小学初中,这充分说明了思想方法的重要性。2011年总目标中进一步提出:“通过义务教育阶段的数学学习,学生能够获得适应社会生活和进一步发展 所必需的数学知识,基本技能、基本思想、基本活动经验。”这一表述打破了我国教育的传统局面。数学教育目标的变化折射出数学观和数学教育观的变化。当今社会是高度科技化、信息化的市场经济社会,数学在科技、经济等领域被广泛应用,因此数学作为广泛应用的技术也日益得到重视,数学作为广泛培养人的思维能力的学科,数学的能力无论是技术力还是思维力,都不仅仅是数学知识和技能作用,因此学生获得良好的数学,教育标志是三维目标的整体实现,是培养学生逐步用数学眼光看待世界分析问题和解决问题。所以作为义务教育阶段的数学教师会面临更大的挑战,一方面是关于数学思想方法的专业知识方面的欠缺;另一方面是课堂教学中应该具备的数学思想方法的意识、经验、策略等的不足。我们只有钻研数学课程标准、教材、充分了解学生、选择恰当的教学方法,不断提高教师素养和教学水平,才能实现我们的教育目标。

四、要注重学生获取数学思想方法的途径

三维目标中倡导学生获取数学思想的方法有小组合作交流、动手实践、自主探究的三种学习方式,我们义务教育阶段的教师要根据学生实际、教材内容,在学生已有的知识经验的基础上,教会学生的学习方法,才能达到应有的教学效果。总之,社会是向前发展的,教师只有终生不断学习,才能使我们教育思想和方法不落后,适应社会发展的需要,为社会培养出合格的人才。

第五篇:读《小学数学与数学思想方法》有感

读《小学数学与数学思想方法》有感

QDSYLY 每次看书我都会发现自身的问题,这次也不例外。我会对比着去发现自己哪些地方还没有做到,然后再去发现我需要学习什么。

一.不足

1.尽管课堂上我会认真帮助同学们分析每一道题,一些时候会将习题变式,但只是就题做题。可是我却忽略了向同学们传授思想方法。也就是学生只“知其然不知其所以然”。从教两年多来也算得上是一大败笔。

2.大多数授课都是将概念直接传授给学生,很少让学生去主动探索,就像书上说的一样“只注重现成结论的传授,不讲究生动过程的展示,终究会走进死胡同”。现在细想会感觉到,让学生花费一节课去探索甚至比自己讲两节课效果都要好。

3.复习时,我还按着老式传统方法,出题做题讲题......反复循环。根本就没做到在思想方法上的总结提升。二.改进之处

1.关于符号。在低年级的时候强调同学们的直观感受,高年级时涉及到的知识就不能单纯的通过特殊例子归纳总结让他们识记了。应该通过习题让他们自己发现问题、提出问题、归纳问题、总结问题。

2.通常在做卷子或者报纸时,最后都有一道能力提升题。其中有很多习题要求归纳总结、填空或者计算,而我们通常的做法是拿住题就讲,却恰恰忘了问题的源头就是某些法则、公式或者定律。倘若我们能教给学生逆推出这样的的习题是用什么样的法则、公式或者定律而来的,那结果肯定事半功倍。三.总结

看完前两章确实很惭愧,因为就自身而言都不能很好的将各种类型的思想方法掌握,更甭说将思想方法传授给学生了。既然发现了问题那么接下来的时间我一定好好改正,将还没有理解透彻的精髓反复研读,争取在掌握数学的思想方法这方面能够有所提升。

下载小学数学常见数学思想方法归纳与整理word格式文档
下载小学数学常见数学思想方法归纳与整理.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    读"小学数学与数学思想方法"有感(本站推荐)

    读"小学数学与数学思想方法"有感黄石小数好书推荐数学思想方法不同于一般的概念和技能,后者一般通过短期的训练便能掌握,而数学思想方法需要通过在教学中长期地渗透和影响才能......

    1小学数学中常见的数学思想方法有哪些

    1. 小学数学中常见的数学思想方法有哪些? 答:小学数学中常见的数学思想方法有:转化思想、集合思想、数形结合思想、函数思想、符号化思想、对应思想、分类思想、归纳思想、模型......

    数学思想方法缩印

    数学思想方法:是对数学知识本质认识,对数学规律的理性认识,是从某些具体的数学内容和对数学知识的认识过程中提炼上升的数学观点。 数学方法:是从数学的角度提出问题,解决问题的......

    数学思想方法学习心得(推荐)

    《数学思想方法》心得体会 宁安市东京城镇小学 黄淑伟 我通过对数学思想方法的学习,并结合我在工作中的实际情况,体会到如下心得: 数学的内容、思想、方法和语言广泛渗入自然学......

    数学思想方法心得体会

    数学思想方法心得体会 数学思想方法是从数学内容中提炼出来的数学学科的精髓,是将数学知识转化为数学能力的桥梁。下面是小编帮大家整理的数学思想方法心得体会,希望大家喜欢......

    数学思想方法(含五篇)

    函数是数学的纲,力和运动的关系是物理的纲。而力和运动的关系是因变量和自变量的关系也就是函数关系,所以数理不分家。最常用到的函数是三角函数,而力学中的力的分解和力的合成......

    浅谈数学思想方法与数学教学设计

    浅谈数学思想方法与数学教学设计 学院:数学科学院姓名:王富超学号:201240433029班级:应数(3)班 摘要:本文将说明什么是数学思想方法及教学模式设计作一介绍,并对教学模式设计利用数......

    初中思想方法与初中数学教学

    《初中思想方法与初中数学教学》――学习心得1 通过参加这次学习,我得到了很多的启发,首先,我了解了什么是数学思想方法,并知道了数学思想是对数学知识和方法本质的认识,是解决数......