第一篇:求极限的方法及例题总结解读
1.定义:
说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;x2lim(3x1)5
(2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。
利用导数的定义求极限
这种方法要求熟练的掌握导数的定义。
2.极限运算法则
定理1 已知limf(x),limg(x)都存在,极限值分别为A,B,则下面极限都存在,且有(1)lim[f(x)g(x)]AB(2)limf(x)g(x)AB(3)limf(x)A,(此时需B0成立)g(x)B
说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。.利用极限的四则运算法求极限
这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。
8.用初等方法变形后,再利用极限运算法则求极限
limx1
例1 3x12x1
(3x1)2223x33limlimx1(x1)(3x12)x1(x1)(3x12)4解:原式=。
注:本题也可以用洛比达法则。
例2 limn(n2n1)n
nn[(n2)(n1)]分子分母同除以limnn2n1limn31211nn32解:原式=(1)n3nlimnn例3 n23
。上下同除以3n解:原式
1()n1lim31n2n()13。
3.两个重要极限
sinx1x0x(1)lim(2)x0lim(1x)e1xlim(11)xex;x
说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,sin3x3lim1lim(12x)2xelim(1)3ex例如:x03x,x0,x;等等。
1x
利用两个重要极限求极限
1cosx2x03x例5 limxx2sin22lim21limx0x0x63x212()22解:原式=。2sin2注:本题也可以用洛比达法则。例6 lim(13sinx)x02x
16sinx3sinxx解:原式=x0 lim(13sinx)lim[(13sinx)x013sinx]6sinxxe6。例7 lim(nn2n)n1
n13nn133lim(1)nn1解:原式=33n1lim[(1)]e3nn1。
n13n
4.等价无穷小
定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。定理3 当x0时,下列函数都是无穷小(即极限是0),且相互等价,即有:
x~sinx~tanx~arcsin面的等价
x~arctanx~ln(1x)~ex1。
说明:当上面每个函数中的自变量x换成g(x)时(g(x)0),仍有上关系成立,例如:当x0时,e3x1~3x;ln(1x2)~x2。
f1(x)f(x)limg1(x)存在时,xx0g(x)也存在且定理4 如果函数f(x),g(x),f1(x),g1(x)都是xx0时的无穷小,且f(x)~f1(x),g(x)~g1(x),则当xx0limf1(x)f1(x)f(x)limlimlimxxxx0g(x)xx0g(x)0g(x)f(x)11等于,即=。
利用等价无穷小代换(定理4)求极限
limx0例9 xln(13x)arctan(x2)ln(13x)~3x,arctan(x2)~x2,解:x0时,limx3x3x2。 原式=x0exesinxlim例10 x0xsinx
esinx(exsinx1)esinx(xsinx)limlim1x0x0xsinxxsinx解:原式=。
注:下面的解法是错误的:
(ex1)(esinx1)xsinxlimlim1x0x0xsinxxsinx原式=。
正如下面例题解法错误一样:
limx0tanxsinxxxlim0x0x3x3。
1tan(x2sin)xlimsinx例11 x0
解:当x0时,x2sin111是无穷小,tan(x2sin)与x2sin等价xxx,x2sin所以,原式=x0
lim1xlimxsin10x0xx。(最后一步用到定理2)
五、利用无穷小的性质求极限
有限个无穷小的和是无穷小,有界函数与无穷小乘积是无穷小。用等价无穷小替换求极限常常行之有效。
例 1.x01/21
lim(1xsinx1sinsin(x1))lim2lnxex1 2.x0
5.洛比达法则
定理5 假设当自变量x趋近于某一定值(或无穷大)时,函数f(x)和g(x)满足:(1)f(x)和g(x)的极限都是0或都是无穷大;
(2)f(x)和g(x)都可导,且g(x)的导数不为0;
f(x)limg(x)存在(或是无穷大)(3);
limf(x)f(x)limmilg(x)也一定存在,g(x),且等于即
f(x)f(x)limg(x)=g(x)。则极限说明:定理5称为洛比达法则,用该法则求极限时,应注意条件是否满足,只要有一条不满足,洛比达法则就不能应用。特别要注意条件
0(1)是否满足,即验证所求极限是否为“0”型或“”型;条件(2)一般都满足,而条件(3)则在求导完毕后可以知道是否满足。另外,洛比达法则可以连续使用,但每次使用之前都需要注意条件。
利用洛比达法则求极限
说明:当所求极限中的函数比较复杂时,也可能用到前面的重要极限、等价无穷小代换等方法。同时,洛比达法则还可以连续使用。
1cosx2x03x例12(例4)limsinx1x06x6。解:原式=(最后一步用到了重要极限)limcosx例13 limx12x1 2sinx解:原式=x1例14 limx0lim212。
xsinxx3 lim1cosxsinx1lim2x0x06x6。3x解:原式==(连续用洛比达法则,最后用重要极限)
sinxxcosx2例15 x0xsinx lim解:
原式limsinxxcosxcosx(cosxxsinx)limx0x0x2x3x2xsinx1limx03x23先用等价无穷小,再用洛必达法则
11lim[]x0xln(1x)例18
11lim[]0解:错误解法:原式=x0xx。
正确解法: 原式limln(1x)xln(1x)xlimx0xln(1x)xxx011x1lim1xlim。x0x02x2x(1x)2
应该注意,洛比达法则并不是总可以用,如下例。例19 limxx2sinx3xcosx
12cosx0lim解:易见:该极限是“0”型,但用洛比达法则后得到:x3sinx,此极限
不存在,而原来极限却是存在的。正确做法如下:
2sinxxlimxcosx3x(分子、分母同时除以x)原式=1
1=3(利用定理1和定理2)
6.连续性
定理6 一切连续函数在其定义去间内的点处都连续,即如果x0是函数 f(x)的定义去间内的一点,则有xx0limf(x)f(x0)。利用函数的连续性(定理6)求极限
例4 limx2ex21x
12x解:因为x02是函数f(x)xe的一个连续点,所以原式=2e4e。
7.极限存在准则
定理7(准则1)单调有界数列必有极限。
四、利用单调有界准则求极限
首先常用数学归纳法讨论数列的单调性和有界性,再求解方程可求出极限。例1.设a0,x1a,x2aaax1,,xn1axn(n1,2,)212
求极限n
limxn。定理8(准则2)已知{xn},{yn},{zn}为三个数列,且满足:(1)ynxnzn,(n1,2,3,)(2)n则极限
10.夹逼定理 limynan,nlimzna
nlimxn一定存在,且极限值也是a,即
limxna。
利用极限存在准则求极限 例20 已知x12,xn12xn,(n1,2,),求nlimxn
limxnx{x}解:易证:数列n单调递增,且有界(0 xn12xn两边求极限,10 得: a2a,解得:a2或a1(不合题意,舍去)所以nlimxn2lim(1。 1n21n212例21 nn1n212nn 11n2nnn21)2解:易见:nnn22limnnn2因为n1limnn112,nn21 1n22lim(所以由准则2得: n11nn2)1。 9.洛必达法则与等价无穷小替换结合法 对于一些函数求极限问题,洛必达法则和等价无穷小结合运用,往往能化简运算,收到奇效。 11.泰勒展开法 12.利用定积分的定义求极限法 积分本质上是和式的极限,所以一些和式的极限问题可以转化为求定积分的问题。 8.利用复合函数求极限 十、利用级数收敛的必要条件求极限 级数收敛的必要条件是:若级数些极限nlimf(n)un1n收敛,则nlimun0,故对某,可将函数 f(n)作为级数n1f(n)的一般项,只须证明此技术收敛,便有nlimf(n)0。 n!例nnn lim 十一、利用幂级数的和函数求极限 当数列本身就是某个级数的部分和数列时,求该数列的极限就成了求相应级数的和,此时常可以辅助性的构造一个函数项级数(通常为幂级数,有时为Fourier级数)。使得要求的极限恰好是该函数项级数的和函数在某点的值。 例求nlim(11332n1)333 7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1) 8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数 9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化还有个方法,非常方便的方法 就是当趋近于无穷大时候 不同函数趋近于无穷的速度是不一样的!!!!!!!! x的x次方快于 x!快于 指数函数 快于 幂数函数 快于 对数函数(画图也能看出速率的快慢)!!!当x趋近无穷的时候 他们的比值的极限一眼就能看出来了 换元法 是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中 16直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意) 读书的好处 1、行万里路,读万卷书。 2、书山有路勤为径,学海无涯苦作舟。 3、读书破万卷,下笔如有神。 4、我所学到的任何有价值的知识都是由自学中得来的。——达尔文 5、少壮不努力,老大徒悲伤。 6、黑发不知勤学早,白首方悔读书迟。——颜真卿 7、宝剑锋从磨砺出,梅花香自苦寒来。 8、读书要三到:心到、眼到、口到 9、玉不琢、不成器,人不学、不知义。 10、一日无书,百事荒废。——陈寿 11、书是人类进步的阶梯。 12、一日不读口生,一日不写手生。 13、我扑在书上,就像饥饿的人扑在面包上。——高尔基 14、书到用时方恨少、事非经过不知难。——陆游 15、读一本好书,就如同和一个高尚的人在交谈——歌德 16、读一切好书,就是和许多高尚的人谈话。——笛卡儿 17、学习永远不晚。——高尔基 18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向 19、学而不思则惘,思而不学则殆。——孔子 20、读书给人以快乐、给人以光彩、给人以才干。——培根 首先说下我的感觉,假如高等数学是棵树木得话,那么 极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记 (x趋近无穷的时候还原成无穷小) 2落笔他 法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提!!! 必须是X趋近而不是N趋近!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!) 必须是 函数的导数要存在!!!!(假如告诉你g(x),没告诉你是否可导,直接用无疑于找死!) 必须是0比0无穷大比无穷大!!!!! 当然还要注意分母不能为0 落笔他 法则分为3中情况0比0无穷比无穷时候直接用 20乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 30的0次方1的无穷次方 无穷的0次方 对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0当他的幂移下来趋近于无穷的时候LNX趋近于0) 3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要 特变注意!!) E的x展开sina展开cos展开ln1+x展开 对题目简化有很好帮助 4面对无穷大比上无穷大形式的解决办法 取大头原则最大项除分子分母!!!!!! 看上去复杂处理很简单!!!!! 5无穷小于有界函数的处理办法 面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。 面对非常复杂的函数 可能只需要知道它的范围结果就出来了!! 6夹逼定理(主要对付的是数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。 7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1) 8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限) 可以使用待定系数法来拆分化简函数 9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化2 个重要极限的应用。这两个很重要!!!对第一个而言是X趋近0时候的sinx与x比值。地2个就如果x趋近无穷大 无穷小都有对有对应的形式 (地2个实际上是 用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)还有个方法,非常方便的方法 就是当趋近于无穷大时候 不同函数趋近于无穷的速度是不一样的!!!!!!!! x的x次方 快于x!快于指数函数快于幂数函数快于对数函数(画图也能看出速率的快慢)!!! 当x趋近无穷的时候他们的比值的极限一眼就能看出来了换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中 13假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的14还有对付数列极限的一种方法,就是当你面对题目实在是没有办法走投无路的时候可以考虑 转化为定积分。一般是从0到1的形式。 15单调有界的性质 对付递推数列时候使用证明单调性!!! 16直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意) (当题目中告诉你F(0)=0时候f(0)导数=0的时候就是暗示你一定要用导数定义!!) 一,求极限的方法横向总结: 1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上) 2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到 2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。 3等差数列与等比数列和求极限:用求和公式。 4分母是乘积分子是相同常数的n项的和求极限:列项求和 5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。 6运用重要极限求极限(基本)。 7乘除法中用等价无穷小量求极限。 8函数在一点处连续时,函数的极限等于极限的函数。 9常数比0型求极限:先求倒数的极限。 10根号套根号型:约分,注意别约错了。 11三角函数的加减求极限:用三角函数公式,将sin化cos 二,求极限的方法纵向总结: 1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。 2未知数趋近于0或无穷:1)将x放在相同的位置 2)用无穷小量与有界变量的乘积 3)2个重要极限 4)分式解法(上述) 首先 对 极限的总结 如下 极限的保号性很重要 就是说在一定区间内 函数的正负与极限一致极限分为 一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!你还能有补充么???)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记 (x趋近无穷的时候还原成无穷小) 2落笔他 法则(大题目有时候会有暗示 要你使用这个方法) 首先他的使用有严格的使用前提!!! 必须是 X趋近而不是N趋近!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!) 必须是 函数的导数要存在!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!) 必须是 0比0 无穷大比无穷大!!!!! 当然还要注意分母不能为0 落笔他 法则分为3中情况0比0 无穷比无穷 时候 直接用0乘以无穷 无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了0的0次方 1的无穷次方 无穷的0次方 对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋 的加减的时候要 特变注意!!)E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助 4面对无穷大比上无穷大形式的解决办法 取大头原则 最大项除分子分母!!!!!! 看上去复杂处理很简单!!!!! 5无穷小于有界函数的处理办法 面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。 面对非常复杂的函数 可能只需要知道它的范围结果就出来了!! 6夹逼定理(主要对付的是数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。 7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1) 8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限) 可以使用待定系数法来拆分化简函数 9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化 10 2 个重要极限的应用。这两个很重要!!!对第一个而言是X趋近0时候的sinx与x 比值。地2个就如果x趋近无穷大 无穷小都有对有对应的形式 (地2个实际上是 用于 函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)还有个方法,非常方便的方法 就是当趋近于无穷大时候 不同函数趋近于无穷的速度是不一样的!!!!!!!! x的x次方 快于 x!快于 指数函数 快于 幂数函数 快于 对数函数(画图也能看出速率的快慢)!!! 当x趋近无穷的时候 他们的比值的极限一眼就能看出来了换元法 是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中13假如要算的话 四则运算法则也算一种方法,当然也是夹杂其中的14还有对付数列极限的一种方法,就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。一般是从0到1的形式。 15单调有界的性质 对付递推数列时候使用 证明单调性!!! 16直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意) (当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!) (0) 回复 1楼2014-03-19 20:22举报 |来自Android客户端 张806788364 举人5 函数的性质也体现在积分 微分中 例如他的奇偶性质 他的周期性。还有复合函数的性质 1奇偶性,奇函数关于原点对称 偶函数关于轴对称 偶函数左右2边的图形一样(奇函数相加为0) 2周期性也可用在导数中 在定积分中也有应用 定积分中的函数是周期函数 积分的周期和他的一致复合函数之间是 自变量与应变量互换 的 关系 4还有个单调性。(再求0点的时候可能用到这个性质!) (可以导的函数的单调性和他的导数正负相关) :o 再就是总结一下间断点的问题(应为一般函数都是连续的 所以 间断点 是对于间断函数而言的) 间断点分为第一类 和第二类剪断点第一类是左右极限都存在的(左右极限存在但是不等 跳跃的的间断点 或者 左右极限存在相等但是不等于函数在这点的值 可取的间断点 地二类 间断点是 震荡间断点 或者是 无穷极端点 (这也说明极限即是 不存在也有可能是有界的) :o 下面总结一下 求极限的一般题型求分段函数的极限 当函数含有绝对值符号时,就很有可能是有分情况讨论的了!!!! 当X趋近无穷时候 存在e的x次方的时候,就要分情况讨论 应为 E的x次方的函数正负无穷的结果是不一样的!!!!极限中含有变上下限的积分 如何解决类???? 说白了 就是说 函数中现在含有积分符号,这么个符号在极限中太麻烦了 你要想办法把它搞掉!!!!!!!! 解决办法 : 1求导,边上下限积分求导,当然就能得到结果了 这不是很容易么? 但是!!!有2个问题要注意!! 问题1 积分函数能否求导? 题目没说积分可以导的话,直接求导的话是错误的!!问题2 被积分函数中 既含有T又含有x的情况下如何解决?????? 解决1的方法: 就是方法2 微分中值定理!!!!! 微分中值定理是函数与积分的联系!更重要的是他能去掉积分符号!!! 解决2的方法 : 当x与t的函数是相互乘的关系的话,把x看做常数提出来,再求导数!!! 求函数极限方法的若干方法 摘要: 关键词: 1引言:极限的重要性 极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。如函数y=f(x)在x=x0处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。学好极限是从以下两方面着手。1:是考察所给函数是否存在极限。2:若函数否存在极限,则考虑如何计算此极限。本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。 2极限的概念及性质2.1极限的概念 2.1.1limn→∞ xn=A,任意的正整数N,使得当n>N时就有 xn−A <。 2.1.2limx→∞f x =A↔∀ε>0,任意整数X,使得当 x >时就有 f x −A <。类似可以定义单侧极限limx→+∞f x =A与limx→−∞f(x)。2.2.3类似可定义当,整数,使得当 时有 。,时右极限与左极限:。在此处键入公式。 2.2极限的性质 2.2.1极限的不等式性质:设若若,则,使得当,当 时有 。时有时有,则 ; 。,则 与,使得当 在的某空心邻 时,时有,则。 。 2.2.1(推论)极限的保号性:设若若,则,使得当,当2.2.2存在极限的函数局部有界性:设存在极限域有 内有界,即3求极限的方法 1、定义法 2、利用极限的四则运算性质求极限,3、利用夹逼性定理求极限 4、利用两个重要极限求极限,5、利用迫敛性求极限,6、利用洛必达法则求极限,7、利用定积分求极限,8、利用无穷小量的性质和无穷小量和无穷大量之间的关系求极限 9、利用变量替换求极限,10、利用递推公式求极限,11、利用等价无穷小量代换求极限,12、利用函数的连续性求极限,13、利用泰勒展开式求极限,14、利用两个准则求极限 15、利用级数收敛的必要条件求极限 16、利用单侧极限求极限 17、利用中值定理求极限 3.1定义法 利用数列极限的定义求出数列的极限.设的,总存在一个正整数 .,当 是一个数列,是实数,如果对任意给定,我们就称是数列 时,都有的极限.记为例1 证明 证 任给,取,则当时有 ,所以。 3.2利用极限的四则运算性质求极限 设,,则 。,例1求解 这是求 型极限,用相消法,分子、分母同除以 得。,其中3.3利用夹逼性定理求极限 当极限不易直接求出时, 可考虑将求极限的变量作适当的放大和缩小, 使放大与缩小所得的新变量易于求极限, 且二者的极限值相同, 则原极限存在,且等于公共值。特别是当在连加或连乘的极限里,可通过各项或各因子的放大与缩小来获得所需的不等式。3.3.1(数列情形)若则。,使得当时有,且,3.3.2(函数情形)若,则,使得当。 时有,又 例题 解 :,其中,因此。 3.4利用两个重要极限球极限 两个重要极限是,或。 第一个重要极限可通过等价无穷小来实现。利用这两个重要极限来求函数的极限时要观察所给的函数形式,只有形式符合或经过变化符合这两个重要极限的形式时,才能够运用此方法来求极限。一般常用的方法是换元法和配指数法。例题1解:令t=故 例题23.5利用迫敛性求极限 ,且在某个。 内有,那么 .则sinx=sin(t)=sint, 且当 时 例 求的极限 解:因为.且 由迫敛性知 所以 3.6利用洛必达法则求极限 假设当自变量和趋近于某一定值(或无穷大)时,函数 和 和 满足:的导数不为0的极限都是或都是无穷大都可导,并且存在(或无穷大),则极限也必存在,且等于,即=。利用洛必达法则求极限,可连续进行运算,可简化一些较复杂的函数求极限的过程,但是运用时需注意条件。 例题 求 解 原式=注:运用洛比达法则应注意以下几点: 1、要注意条件,也就是说,在没有化为或时不可求导。 2、应用洛必达法则,要分别求分子、分母的导数,而不是求整个分式的导数。 3、要及时化简极限符号后面的分式,在化简以后检查是否还是未定式,若遇到不是未定式,应立即停止使用洛必达法则,否则会错误。 3.7利用定积分求极限 利用定积分求和式的极限时首先选好恰当的可积函数f(x)。把所求极限的和式表示成f(x)在某区间 例 上的待定分法(一般是等分)的积分和式的极限。 解 原式=,由定积分的定义可知。 3.8利用无穷小量的性质和无穷小量和无穷大量之间的关系求极限 利用无穷小量乘有界变量仍是无穷小量,这一方法在求极限时常用到。在求函数极限过程中,如果此函数是某个无穷小量与所有其他量相乘或相除时, 这个无穷小量可用它的等价无穷小量来代替,从而使计算简单化。例 解 注意时。 3.9利用变量替换求极限 为将未知的极限化简,或转化为已知的极限,可以根据极限式特点,适当的引入新变量,来替换原有变量,使原来的极限过程转化为新的极限过程。最常用的方法就是等价无穷小的代换。 例 已知证 令 试证 则时,于是 当时),故时第二、三项趋于零,现在证明第四项极限也为零。因有界,即,使得 。所以 (当 原式得证。 3.10利用递推公式求极限 用递推公式计算或者证明序列的极限,也是一常见的方法,我们需要首先验证极限的存在性。在极限存在前提下,根据极限唯一性,解出我们所需要的结果,但是验证极限的存在形式是比较困难的,需要利用有关的不等式或实数的一些性质来解决。 例 设,对,定义 且 。证明 时,解 对推出递推公式解得,,因为,因此,序列 中可以得出 是单调递增且有界的,它的极限,设为,从,即。 3.11利用等价无穷小量代换求极限 所谓的无穷小量即,例如 求极限 解 本题属于有 型极限,利用等价无穷小因子替换 = =,,称 与 是 时的无穷小量,记作 注:可以看出,想利用此方法求函数的极限必须熟练掌握一些常用的 等价无穷小量,如:由于,故有又由于故有。 另注:在利用等价无穷小代换求极限时,应注意:只有对所求极限中相乘或相除的因式才能利用等价无穷小量来代换,而对极限式中的相加或相减的部分则不能随意代换。 小结:在求解极限的时候要特别要注意无穷小等价代换,无穷小等价代换可以很好的简化解题。 3.12利用函数的连续性求极限 在若处连续,那么且 在点连续,则。 例 求的极限 解:由于 及函数在处连续,故 3.13利用泰勒展开式求极限 列举下 例题 3.14利用两个准则求极限 3.14.1函数极限迫敛性(夹逼准则):若一个正整数,并且例题 3.14.2单调有界准则:单调有界数列必有极限,并且极限唯一。,当时,则 则。 利用单调有界准则求极限,关键是要证明数列的存在,然后根据数列的通项递推公式求极限。例题 3.15利用级数收敛的必要条件求极限 利用级数收敛的必要条件:若级数收敛,则,首先判定级数收敛,然后求出它的通项的极限。例题 3.16利用单侧极限求极限 1)求含的函数 趋向无穷的极限,或求含的函数 趋于的极限;2)求含取整函数的函数极限;3)分段函数在分段点处的极限;4)含偶次方根的函数以及 或的函数,趋向无穷的极限.这种方法还能使用于求分段函数在分段点处的极限,首先必须考虑分段点的左,右极限,如果左、右极限都存在且相等,则函数在分界点处的极限存在,否则极限不存在。例题 3.17利用中值定理求极限 3.17.1微分中值定理: 3.17.2积分中值定理 求极限的方法小结 要了解极限首先看看的定义哦 A.某点处的极限与该点处有无定义和连续无关,但在该点周围(数列除外)的必 某点处的极限与该点处有无定义和连续无关,某点处的极限与该点处有无定义和连续无关 但在该点周围(数列除外)须连续 B.了解左右极限的定义 了解左右极限的定义 C.极限的四则和乘方运算 D.区别数列极限与函数极限的不同之处 D.区别数列极限与函数极限的不同之处 E.注意自变量在趋近值的微小范围内 注意自变量在趋近值的微小范围内,E.注意自变量在趋近值的微小范围内,可以利用它同 B 一起去绝对值 1、代入法——在极限点处利用函数的连续性求极限 ——在极限点处利用函数的连续性求极限、代入法—— Lim(x+1)=2(x->1)2.约分法——分解因式 Lim(x2-1)/(x-1)=2(x->1)约分法—— ——分解因式 这只是最简单的约分法,同时还有分母,分子有理化。通分后在用约分法)(这只是最简单的约分法,同时还有分母,分子有理化。通分后在用约分法)3.利用图象——反比例函数、指数、对数、三角函数。。。利用图象——反比例函数、指数、对数、三角函数。。。——反比例函数 Lim1/x=0(x->∞),limax=0(1 4、比值法、Lima n/n!(n->∞,a>0)因为(因为(a n+1 /(n+1)!)/(a n/n!)=a/(n+1)(n->∞,a>0)()))n+1 n 所以 0<(a /(n+1)!)/(a /n!)=a/(n+1)<1 所以 Lima n/n!=0(()))n 2(求 limn /n!=_(n->∞)求 5、极限与导数 —— 利用导数的定义 Lim(e x-1)/x=(ex)、(x=0)=1(x->0)——利用导数的定义、极限与导数——()6.有界函数与无穷小的积仍为无穷小 Limsinx/x=0(x->-∞)7.利用等价无穷小 X~sinx~tanx~arctanx ~ e x-1~ln(x+1),1-cosx~1/2*x 2 ,(1+ax)b-1~abx, a x-1~xlna< x->0> Limtan 2 x/(1-cosx)=2(x->0)(在利用无穷小时注意它不是充分必要的即应用无穷小转化后若极限不存 不能得到原极限不存在)在,不能得到原极限不存在)8.利用重要极限 利用重要极限____lim(1+x)1/x=e(1 ∞)利用重要极限 Lim(1+sin2x)x2=elim sin2x/x2(解释 sin2x/x2)=e(中间的配凑略 中间的配凑略)解释 中间的配凑略 1/f(x)limg(x)/f(x)Lim(1+g(x))=e(g(x),f(x)都是无穷小 都是无穷小)都是无穷小 ∞(1 是很重要的一个极限,它可以用取对数法,还有就是上面的 取对数法是幂指 是很重要的一个极限,它可以用取对数法,还有就是上面的.取对数法是幂指 函数的通法,时上述方法就显得更简单了恩)函数的通法,当看见 1∞时上述方法就显得更简单了恩)9.利用洛比达法则 可转化 为 0/0, ∞/∞型)利用洛比达法则(可转化为 Lim=x/sinx(x->0)利用洛比达法则 型 洛比达法则哈只需稍微的转化哈。(对于未定式都可用 洛比达法则哈只需稍微的转化哈。同时它同 7 一样都不是 充要的哦)充要的哦)10.利用泰勒公式 利用泰勒公式 Lim(sinx-xcosx)/sinx 3(x->0)=lim(x-x 3 /3!+o(x 3)-x+x 2 /2!-0(x 3))/x 3 =lim(x 3 /3+o(x 3))/ x 3 =1/3(在极限中很少用,但可以解决一些特殊的高数上有哈)在极限中很少用,在极限中很少用 但可以解决一些特殊的高数上有哈)11.极限与积分 ___就是利用积分的定义 极限与积分 就是利用积分的定义 _______第二篇:求极限方法
第三篇:求极限总结
第四篇:求函数极限方法的若干方法
第五篇:求极限的方法小结
解:
=
12.利用柯西准则来求!12.利用柯西准则来求!利用柯西准则来求 柯西准则: 要使{xn} {xn}有极限的充要条件使任给 ε>0,存在自然数 柯西准则 : 要使 {xn} 有极限的充要条件使任给 ε>0, 存在自然数 N,使 得当 n>N 时,对于 |xn任意的自然数 m 有 |xn1)/(x^1/n-1):=n/m.可令 x=y^mn 得 := n/m.14.利用单调有界必有极限来求 14.利用单调有界必有极限来求 证明: x1=。。。)存在极限 存在极限,证明:数列 x1=2^0.5 ,x(n+1)=(2+xn)^0.5(n=1,2,。。。)存在极限,并求出极限值 x1=√2<2,设 xn<2,则 x(n+1)=√2+xn<√(2+2)=2,∴0<xn< 由归纳法 x1=√2<2,设 xn<2,则 x(n+1)=√2+xn<√(2+2)=2,∴0<xn<.∵x(n+1)=√(2+xn)>√(2xn)=√2*√xn> 2,xn 有 界.∵x(n+1)=√(2+xn)>√(2xn)=√2*√xn>√xn*√xn=xn,∴xn 有 界,∴xn 有极限 a,在 x(n+1)=(2+xn)^0.5 两边取极限 a,在 :a∧2-2=0,a=2,(a=得:a∧2-a-2=0,a=2,(a=-1 舍).15.利用夹逼准则求极限 15.利用夹逼准则求极限 16.求数列极限时 可以先算出其极限值,然后再证明。求数列极限时,16.求数列极限时,可以先算出其极限值,然后再证明。17.利用级数收敛的必要条件求极限 17.利用级数收敛的必要条件求极限 18.利用幂级数的和函数求极限 18.利用幂级数的和函数求极限