“哥德巴赫猜想”讲义(第10讲)

时间:2019-05-13 04:51:55下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《“哥德巴赫猜想”讲义(第10讲)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《“哥德巴赫猜想”讲义(第10讲)》。

第一篇:“哥德巴赫猜想”讲义(第10讲)

“哥德巴赫猜想”讲义

(第10讲)

“哥德巴赫猜想”证明(5)

主讲王若仲

第9讲我们讲解到了引理9,这一讲我们开始从孙子—高斯定理讲起。不曾想2000多年前我国孙子发现的原理现在还能派上大用场。

孙子—高斯定理:如果正整数m1,m2,m3,„,mt两两互质,那么同余方程组x≡ai(modmi)(i=1,2,3,„,t)有无穷多解,且这些解关于模M=m1·m2·m3„mt同余,x≡(a1M1´M1+a2M2´M2+a3M3´M3+„+atMt´Mt)(mod M),其中Mi=M/mi,而Mi´是满足Mi´Mi≡1(modmi)的正整数。

证明:因为(mi、mj)=1(i≠j),所以(Mi、mi)=1(i=1,2,3,„,t),从而Mix≡1(modmi)有唯一解,则x≡Mi´(modmi)。又因M=Mimi,Mi´是满足Mi´Mi≡1(modmi)的正整数,设Mi´Miai=himiai+ai,我们令hi=m1·m2·m3„mi-1·mi+1„mt,令a=a1+a2+a3+„+at,则a1M1´M1+a2M2´M2+a3M3´M3+„+atMt´Mt≡a(modm1m2m3„mt),即x≡(a1M1´M1+a2M2´M2+a3M3´M3+„+atMt´Mt)(mod M)是同余式组x≡ai(modmi)(i=1,2,3,„,t)的一个解。再说因为正整数m1,m2,m3,„,mt两两互质,那么同余方程组x≡ai(modmi)(i=1,2,3,„,t)有无穷多解,且任一解均可化为m1·m2·m3„mtu+b的形式,其中u为正整数,b为整数,0≢b<m1·m2·m3„mt,而(m1·m2·m3„mtu+b)÷(m1·m2·m3„mt)的余数为b,故同余

方程组x≡a((i=1,2,3,„,t)的任一解关于模M=m1·m2·m3„imodmi)mt同余。

若x1,x2均适合同余式组x≡ai(modmi)(i=1,2,3,„,t),则x1≡a(modm1m2m3„mt),x2≡a(modm1m2m3„mt),所以x1≡x(2modm1m2m3„mt),又因(mi、mj)=1(i≠j),所以x1≡x2(modm1m2m3„mt),即x1≡x2(modM),故同余式组x≡ai(modmi)(i=1,2,3,„,t)的解唯一,即就是余数唯一。

同余性质定理1:若a≡b(modm),(k,m)=1,k为正整数,则ka≡kb(modkm)。

证明:因为a≡b(modm),我们设a=mu+r,b=mu´+r,r<m,又因为(k,m)=1,k为正整数,则ka=kmu+kr,kb=kmu´+kr,而kr<km,故ka≡kb(modkm)。

同余性质定理2:若a≡b(modm),b≡c(modm),则a≡c(modm)。证明:因为a≡b(modm),我们设a=mu+r,b=mu´+r,r<m,又因为b≡c(modm),又设c=mu"+r,显然a≡c(modm)。

参考文献

[1]戎士奎,十章数论(贵州教育出版社)1994年9月第1版

[2]闵嗣鹤,严士健,初等数论(人民教育出版社)1983年2月第6版 [3]刘玉琏,付沛仁,数学分析(高等教育出版社)1984年3月第1版

[4]王文才,施桂芬,数学小辞典(科学技术文艺出版社)1983年2月第1版

二〇一四年四月十七日

第二篇:“哥德巴赫猜想”讲义(第19讲)

“哥德巴赫猜想”讲义

(

所以对于“偶数2m=奇数+奇数”来说,就只有下面几种情形: ①偶数2m=奇合数+奇合数,②偶数2m=奇合数+奇素数,③偶数2m=奇素数+奇素数,④偶数2m=1+奇合数,⑤偶数2m=1+奇素数。

对于“偶数2m=奇数+奇数”的情形,我们下面一步一步具体分析:

(ⅰ)、对于偶数2m,当m为奇素数时,我们不妨令m=p,p为奇素数,那么2m=p+p,这种情形下,显然偶数2m可表为“奇素数+奇素数”。

(ⅱ)、对于偶数2m,假如集合{(2m-p1),(2m-p2),(2m-p3),„,(2m-pt)}中至少有一个奇数为奇素数,我们不妨令(2m-pi)为奇素数,pi∈{p1,p2,p3,„,pt},那么2m=(2m-pi)+pi,显然偶数2m可表为“奇素数+奇素数”。

“哥德巴赫猜想针对的是无穷的偶数,为了解决无穷的问题,一般情况下,我们设定一个非常大的偶数2m,设奇素数p1,p2,p3,„,pt均为不大于√2m的全体奇素数(pi< pj,i<j,i、j=1,2,3,„,t),t∈N;并且假设偶数2m均不含有奇素数因子p1,p2,p3,„,pt,为了解保奇素数p1,p2,p3,„,pt均要被筛除,我们还要假设集合{(2m-p1),(2m-p2),(2m-p3),„,(2m-pt)}中的奇数均为奇合数;因为偶数2m=(2m-p1)+ p1,2m=(2m-p2)+ p2,2m=(2m-p3)+ p3,„,2m=(2m-pt)+ pt。在说上面这样的情形在无穷多的偶数中是必然存在的。说明白了就是对偶数2m对应的集合{1,3,5,7,9,„,(2m-3),(2m-1)}中的奇数,要达到筛除的最大化,即达到筛除的极限。

如果我们设集合A={1,3,5,7,9,„,(2m-3),(2m-1)},又设集合A1={ p1,3p1,5p1,7p1,9p1,„,(2m1-1)p1},集合A1´={(2m-p1),(2m-3p1),(2m-5p1),(2m-7p1),(2m-9p1),(2m-11p1),„,[2m-(2m1-1)p1]},集合A2={p2,3p2,5p2,7p2,9p2,„,(2m2-1)p2},集合A2´={(2m-p2),(2m-3p2),(2m-5p2),(2m-7p2),(2m-9p2),(2m-11p2),„,[2m-(2m2-1)p2]},集合A3={p3,3p3,5p3,7p3,9p3,„,(2m3-1)p3},集合A3´={(2m-p3),(2m-3p3),(2m-5p3),(2m-7p3),(2m-9p3),(2m-11p3),„,[2m-(2m3-1)p3]},„,集合At={pt,3pt,5pt,7pt,9pt,„,(2mt-1)pt},集合At´={(2m-pt),(2m-3pt),(2m-5pt),(2m-7pt),(2m-9pt),(2m-11pt),„,[2m-(2mt-1)pt]};其中奇数(2m1-1)p1为该表达形式下不大于奇数(2m-1)的最大奇数,奇数(2m2-1)p2为该表达形式下不大于奇数(2m-1)的最大奇数,奇数(2m3-1)p3为该表达形式下不大于奇数(2m-1)的最大奇数,„,奇数(2mt-1-1)pt-1为该表达形式下不大于奇数(2m-1)的最大奇数,奇数(2mt-1)pt为该表达形式下不大于奇数(2m-1)的最大奇数。

对于偶数2m以内的全体奇数,偶数2m对应的集合{1,3,5,7,9,„,(2m-3),(2m-1)},我们在集合A={1,3,5,7,9,„,(2m-3),(2m-1)}中进行埃拉托斯特尼顺筛和埃拉托斯特尼逆筛这两种筛法配合筛:

〈1〉在集合A中筛除属于集合A1中的奇数,又在集合A中筛除属于集合A1´中的奇数,得到集合B1;因为我们设偶数2m均不含有奇素数因子p1,p2,p3,„,pt。所以集合A和集合A1无公共元素。〈2〉在集合B1中筛除属于集合A2中的奇数,又在集合B1中筛除属于集合A2´中的奇数,得到集合B2;

〈3〉在集合B2中筛除属于集合A3中的奇数,又在集合B2中筛除属于集合A3´中的奇数,得到集合B3;

〈t-1〉在集合Bt-2中筛除属于集合At-1中的奇数,又在集合Bt-2

中筛除属于集合At-1´中的奇数,得到集合Bt-1;

〈t〉在集合Bt-1中筛除属于集合At中的奇数,又在集合Bt-1中筛除属于集合At´中的奇数,最终得到集合Bt。

最后在集合Bt中再筛除奇数1和(2m-1)得到集合H,如果我们 能判定集合H中确实有奇数,那么集合H中的奇数必定为奇素数,同时还能判定偶数2m可表为两个奇素数之和。因为集合{1,3,5,7,9,„,(2m-3),(2m-1)}中的奇数经过上面的配合筛后,如下情形中的奇数被全部筛除:

①偶数2m=奇合数+奇合数,②偶数2m=奇合数+奇素数,③偶数2m=1+奇合数,④偶数2m=1+奇素数。

说明最后在集合H中的奇数必定为奇素数,并且集合H中的奇数必定

只满足“偶数2m=奇素数+奇素数”的情形。

参考文献

[1]戎士奎,十章数论(贵州教育出版社)1994年9月第1版

[2]闵嗣鹤,严士健,初等数论(人民教育出版社)1983年2月第6版 [3]刘玉琏,付沛仁,数学分析(高等教育出版社)1984年3月第1版

[4]王文才,施桂芬,数学小辞典(科学技术文艺出版社)1983年2月第1版

二〇一四年四月二十日

第三篇:“哥德巴赫猜想”讲义(第12讲)

“哥德巴赫猜想”讲义

(第12讲)“哥德巴赫猜想”证明(7)

主讲王若仲

第11讲我们讲解了核心部分的定理1,这一讲我们讲核心部分的定理2。

定理2:对于任何一个比较大的偶数2m,设奇素数p1,p2,p3,„,pt均为不大于√2m的全体奇素数(pi< pj,i<j,i、j=1,2,3,„,t),t∈N,且偶数2m均不含有奇素数因子p1,p2,p3,„,pt;那么集合{ pi,2pi,3pi,4pi,5pi,„,mipi }∩{ pj,2pj,3pj,4pj,5pj,„,mjpj }∩„∩{pr,2pr,3pr,4pr,5pr,„,mrpr}∩{ps,2ps,3ps,4ps,5ps,„,ms ps }中正整数的总个数与集合{(2m-pi),(2m-2pi),(2m-3pi),(2m-4pi),(2m-5pi),„,(2m-mipi)}∩{(2m-pj),(2m-2pj),(2m-3pj),(2m-4pj),(2m-5pj),„,(2m-mjpj)}∩„∩{(2m-pr),(2m-2pr),(2m-3pr),(2m-4pr),(2m-5pr),„,(2m-mrpr)}∩{(2m-ps),(2m-2ps),(2m-3ps),(2m-4ps),(2m-5ps),„,(2m-msps)}中正整数的总个数相等。其中pi,pj,„,pr,ps为两两互不相同的奇素数,且均小于√2m;mipi为对应的集合情形下不大于偶数2m的最大正整数,mjpj为对应的集合情形下不大于偶数2m的最大正整数,„,mrpr为对应的集合情形下不大于偶数2m的最大正整数,msps为对应的集合情形下不大于偶数2m的最大正整数。

证明:对于集合{(2m-pi),(2m-2pi),(2m-3pi),(2m-4pi),(2m-5pi),„,(2m-mipi)},我们令2m-mipi=hi,因为mipi为对应的集合情形下不大于偶数2m的最大正整数,显然hi<pi,则2m-(mi-1)pi=2m-mipi+pi=pi+hi,2m-(mi-2)pi=2m-mip i+2pi=2pi+hi,„,(2m-2pi)= 2m-[mi-(mi-2)]p1=(mi-2)pi+2m-mipi=(mi-2)pi+hi,(2m-pi)=2m-[mi-(mi-1)]p1 =(mi-1)pi+2m-mipi =(mi-1)pi+hi;那么集合{(2m-pi),(2m-2pi),(2m-3pi),(2m-4pi),(2m-5pi),„,(2m-mipi)}={hi,(pi+hi),(2pi+hi),„,[(mi-2)pi+hi],[(mi-1)pi+hi]};

我们令2m-mjpj=hj;„;2m-mrpr=hr;2m-msps=hs。同理可得:(2m-pj){,(2m-2pj),(2m-3pj),(2m-4pj),(2m-5pj),„,(2m-mjpj)}={hj,(pj+hj),(2pj+hj),„,[(mj-2)pj+hj],[(mj-1)pj+hj]},„,{(2m-pr),(2m-2pr),(2m-3pr),(2m-4pr),(2m-5pr),„,(2m-mrpr)}={hr,(pr+hr),(2pr+hr),„,[(mr-2)pr+hr],[(mr-1)pr+hr]},{(2m-ps),(2m-2ps),(2m-3ps),(2m-4ps),(2m-5ps),„,(2m-msps)}={hs,(ps+hs),(2ps+hs),„,[(ms-2)ps+hs],[(ms-1)ps+hs]}。

因为前面令2m-mipi=hi,2m-mjpj=hj;„;2m-mrpr=hr;2m-msps=hs。那么有2m≡hi(modpi),2m≡hj(modpj),„,2m≡hr(modpr),2m≡hs(modps);所以集合{(2m-pi),(2m-2pi),(2m-3pi),(2m-4pi),(2m-5pi),„,(2m-mipi)}对应同余方程xi≡h(;集合{(2m-pj),imodpi)(2m-2pj),(2m-3pj),(2m-4pj),(2m-5pj),„,(2m-mjpj)}对应同余方程xj≡hj(modpj);„;集合{(2m-pr),(2m-2pr),(2m-3pr),(2m-4pr),(2m-5pr),„,(2m-mrpr)}对应同余方程xr≡hr(modpr);

集合{(2m-ps),(2m-2ps),(2m-3ps),(2m-4ps),(2m-5ps),„,(2m-msps)}对应同余方程xs≡hs(modps)。

由孙子—高斯定理可知,同余方程组xi≡hi(modpi),xj≡hj

(modpj),„,xr≡hr(modpr),xs≡hs(modps)有无穷多解,且这些解关于模M=pipj„prps同余,又因为偶数2m是同余方程xi≡h(imodpi)的解,偶数2m也是同余方程xj≡hj(modpj)的解,„,偶数2m也是同余方程xr≡hr(modpr)的解,偶数2m也是同余方程xs≡hs(modps)的解;那么偶数2m也是同余方程组xi≡h(,xj≡h(,„,imodpi)jmodpj)xr≡hr(modpr),xs≡hs(modps)的一个解。那么同余方程组xi≡hi(modpi),xj≡hj(modpj),„,xr≡hr(modpr),xs≡hs(modps)的解总可以转化为同余方程y≡k(modpipj„prps)的解, k为小于pipj„prps的正整数,且k=2m-pipj„prpsu,pipj„prpsu为小于偶数2m的最大正整数。那么2m-(u-1)pipj„prps=2m-pipj„prpsu+pipj„prps=pipj„prps+k,2m-(u-2)pipj„prps=2m-pipj„prpsu+2pipj„prps=2pipj„prps+k,„,(2m-2pipj„prps)=2m-[u-(u-2)] pipj„prps=(u-2)pipj„prps+2m-pipj„prpsu=(u-2)pipj„prps+k,(2m-pipj„prps)=2m-[u-(u-1)] pipj„prps=(u-1)pipj„prps +2m-pipj„prpsu=(u-1)pipj„prps+k;那么集合{(2m-pipj„prps),(2m-2pipj„prps),(2m-3pipj„prps),(2m-4pipj„prps),(2m-5pipj„prps),„,(2m-upipj„prps)}={ k,(pipj„prps+k),(2pipj„prps+ k),„,[(u-2)pipj„prps+k],[(u-1)pipj„prps+k]}。

又从前面可知,偶数2m是同余方程y≡k(modpipj„prps)的一个

解,则偶数2m=upipj„prps+k。所以k对应pipj„prpsu,(pipj„prps+k)对应pipj„prp(,(2pipj„prps+k)对应pipj„prp(,(3pipj„su-1)su-2)prps+k)对应pipj„prps(u-3),„,[(u-1)pipj„prps+k]对应pipj„prps。故集合{ pi,2pi,3pi,4pi,5pi,„,mipi }∩{ pj,2pj,3pj,4pj,5pj,„,mjpj }∩„∩{pr,2pr,3pr,4pr,5pr,„,mrpr}∩{ps,2ps,3ps,4ps,5ps,„,ms ps }中正整数的总个数与集合{(2m-pi),(2m-2pi),(2m-3pi),(2m-4pi),(2m-5pi),„,(2m-mipi)}∩{(2m-pj),(2m-2pj),(2m-3pj),(2m-4pj),(2m-5pj),„,(2m-mjpj)}∩„∩{(2m-pr),(2m-2pr),(2m-3pr),(2m-4pr),(2m-5pr),„,(2m-mrpr)}∩{(2m-ps),(2m-2ps),(2m-3ps),(2m-4ps),(2m-5ps),„,(2m-msps)}中正整数的总个数相等。故定理2成立。

例

5:证明集合{3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93,96,99}∩{7,14,21,28,35,42,49,56,63,70,77,84,91,98}中正整数的总个数与{(100-3),(100-6),(100-9),(100-12),(100-15),(100-18),(100-21),(100-24),(100-27),(100-30),(100-33),(100-36),(100-39),(100-42),(100-45),(100-48),(100-51),(100-54),(100-57),(100-60),(100-63),(100-66),(100-69),(100-72),(100-75),(100-78),(100-81),(100-84),(100-87),(100-90),(100-93),(100-96),(100-99)}∩{(100-7),(100-14),(100-21),(100-28),(100-35),(100-42),(100-49),(100-56),(100-63),(100-70),(100-77),(100-84),(100-91),(100-98)}中正整数的总个数相等。

证明:因为集合{3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93,96,99}∩{7,14,21,28,35,42,49,56,63,70,77,84,91,98}={21,42,63,84}。

又因为集合{(100-3),(100-6),(100-9),(100-12),(100-15),(100-18),(100-21),(100-24),(100-27),(100-30),(100-33),(100-36),(100-39),(100-42),(100-45),(100-48),(100-51),(100-54),(100-57),(100-60),(100-63),(100-66),(100-69),(100-72),(100-75),(100-78),(100-81),(100-84),(100-87),(100-90),(100-93),(100-96),(100-99)}∩{(100-7),(100-14),(100-21),(100-28),(100-35),(100-42),(100-49),(100-56),(100-63),(100-70),(100-77),(100-84),(100-91),(100-98)}={(100-21),(100-42),(100-63),(100-84)}。所以集合{3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93,96,99}∩{7,14,21,28,35,42,49,56,63,70,77,84,91,98}中正整数的总个数与{(100-3),(100-6),(100-9),(100-12),(100-15),(100-18),(100-21),(100-24),(100-27),(100-30),(100-33),(100-36),(100-39),(100-42),(100-45),(100-48),(100-51),(100-54),(100-57),(100-60),(100-63),(100-66),(100-69),(100-72),(100-75),(100-78),(100-81),(100-84),(100-87),(100-90),(100-93),(100-96),(100-99)}∩{(100-7),(100-14),(100-21),(100-28),(100-35),(100-42),(100-49),(100-56),(100-63),(100-70),(100-77),(100-84),(100-91),(100-98)}中正整数的总个数均为4个。(证毕)

参考文献

[1]戎士奎,十章数论(贵州教育出版社)1994年9月第1版

[2]闵嗣鹤,严士健,初等数论(人民教育出版社)1983年2月第6版 [3]刘玉琏,付沛仁,数学分析(高等教育出版社)1984年3月第1版

[4]王文才,施桂芬,数学小辞典(科学技术文艺出版社)1983年2月第1版

二〇一四年四月十八日

第四篇:“哥德巴赫猜想”讲义(第14讲)

“哥德巴赫猜想”讲义

(第14讲)“哥德巴赫猜想”证明(9)

主讲王若仲

第13讲我们讲解了核心部分的定理3,这一讲我们讲核心部分的定理4。

定理4:对于任何一个比较大的偶数2m,设奇素数p1,p2,p3,„,pt均为不大于√2m的全体奇素数(pi´<pj´,i´<j´,i´、j´=1,2,3,„,t),t∈N,且偶数2m均不含有奇素数因子p1,p2,p3,„,pt;那么集合{ pi,2pi,3pi,4pi,5pi,„,mipi }∩{ pj,2pj,3pj,4pj,5pj,„,mjpj }∩„∩{pr,2pr,3pr,4pr,5pr,„,mrpr}∩{ps,2ps,3ps,4ps,5ps,„,ms ps }∩{pe,2pe,3pe,4pe,5pe,„,mepe}∩{pu,2pu,3pu,4pu,5pu,„,mupu}∩„∩{pv,2pv,3pv,4pv,5pv,„,mvpv}∩{pw,2pw,3pw,4pw,5pw,„,mwpw}中正整数的总个数与集合{(2m-pi),(2m-2pi),(2m-3pi),(2m-4pi),(2m-5pi),„,(2m-mipi)}∩{(2m-pj),(2m-2pj),(2m-3pj),(2m-4pj),(2m-5pj),„,(2m-mjpj)}∩„∩{(2m-pr),(2m-2pr),(2m-3pr),(2m-4pr),(2m-5pr),„,(2m-mrpr)}∩{(2m-ps),(2m-2ps),(2m-3ps),(2m-4ps),(2m-5ps),„,(2m-msps)}∩{pe,2pe,3pe,4pe,5pe,„,mepe}∩{pu,2pu,3pu,4pu,5pu,„,mupu}∩„∩{pv,2pv,3pv,4pv,5pv,„,mvpv}∩{pw,2pw,3pw,4pw,5pw,„,mwpw}中正整数的总个数相等。其中其中pi,pj,„,mipi为对应的集合情形下不大于偶数2m的最大正整数,mjpj为对应的集合情形下不大于偶数2m的最大正整数,„,mrpr为对应的集合情形下不大于偶数2m的最大正整数,msps为对应的集合情形下不大于偶数2m的最大正整数,mepe为对应的集合情形下不大于偶数2m的最大正整数,mupu为对应的集合情形下不大于偶数2m的最大正整数,„,mvpv为对应的集合情形下不大于偶数2m的最大正整数,mwpw为对应的集合情形下不大于偶数2m的最大正整数。

证明:对于集合{(2m-pi),(2m-2pi),(2m-3pi),(2m-4pi),(2m-5pi),„,(2m-mipi)},我们令2m-mipi=hi,因为mipi为对应的集合情形下不大于偶数2m的最大正整数,显然hi<pi,则2m-(mi-1)pi=2m-mipi+pi=pi+hi,2m-(mi-2)pi=2m-mip i+2pi=2pi+hi,„,(2m-2pi)= 2m-[mi-(mi-2)]pi=(mi-2)pi+2m-mipi=(mi-2)pi+hi,(2m-pi)=2m-[mi-(mi-1)]p1 =(mi-1)pi+2m-mipi =(mi-1)pi+hi;那么集合{(2m-pi),(2m-2pi),(2m-3pi),(2m-4pi),(2m-5pi),„,(2m-mipi)}={hi,(pi+hi),(2pi+hi),„,[(mi-2)pi+hi],[(mi-1)pi+hi]};我们令2m-mjpj=hj;„;2m-mrpr=hr;2m-msps=hs。同理可得:{(2m-pj),(2m-2pj),(2m-3pj),(2m-4pj),(2m-5pj),„,(2m-mjpj)}={hj,(pj+hj),(2pj+hj),„,[(mj-2)pj+hj],[(mj-1)pj+hj]},„,{(2m-pr),(2m-2pr),(2m-3pr),(2m-4pr),(2m-5pr),„,(2m-mrpr)}={hr,(pr+hr),(2pr+hr),„,[(mr-2)pr+hr],[(mr-1)pr+hr]},{(2m-ps),(2m-2ps),(2m-3ps),(2m-4ps),(2m-5ps),„,(2m-msps)}={hs,因为前面令2m-mipi=hi,2m-mjpj=hj;„;2m-mrpr=hr;2m-msps=hs。那么有2m≡hi(modpi),2m≡hj(modpj),„,2m≡hr(modpr),2m≡hs(modps);所以集合{(2m-pi),(2m-2pi),(2m-3pi),(2m-4pi),(2m-5pi),„,(2m-mipi)}对应同余方程xi≡h(;集合{(2m-pj),imodpi)(2m-2pj),(2m-3pj),(2m-4pj),(2m-5pj),„,(2m-mjpj)}对应同余方程xj≡hj(modpj);„;集合{(2m-pr),(2m-2pr),(2m-3pr),(2m-4pr),(2m-5pr),„,(2m-mrpr)}对应同余方程xr≡hr(modpr);集合{(2m-ps),(2m-2ps),(2m-3ps),(2m-4ps),(2m-5ps),„,(2m-msps)}对应同余方程xs≡hs(modps)。

由孙子—高斯定理可知,同余方程组xi≡hi(modpi),xj≡hj(modpj),„,xr≡hr(modpr),xs≡hs(modps)有无穷多解,且这些解关于模M=pipj„prps同余,因为(pepu„pvpw,pipj„prps)=1,由同余性质定理1可知,同余方程组xi≡hi(modpi),xj≡hj(modpj),„,xr≡hr(modpr),xs≡hs(modps)的任一解与pepu„pvpw的乘积关于模M´=pipj„prpspepu„pvpw同余,又因为偶数2m是同余方程xi≡hi(modpi)的解,偶数2m也是同余方程xj≡hj(modpj)的解,„,偶数2m也是同余方程xr≡hr(modpr)的解,偶数2m也是同余方程xs≡hs(modps)的解;那么偶数2m也是同余方程组xi≡h(,xj≡h(,„,imodpi)jmodpj)xr≡hr(modpr),xs≡hs(modps)的一个解。在偶数2m范围内,同余方程组xi≡hi(modpi),xj≡hj(modpj),„,xr≡hr(modpr),xs≡hs(modps)的所有解对应集合{ h´,(pipj„prps+h´),(2pipj„prps+h´),´]},其中vpipj„prps„pt为不大于偶数2m的最大正整数。显然集合{ h´,(pipj„prps +h´),(2 pipj„prps +h´),(3 pipj„prps +h´),„,[(v-2)pipj„prps+h´],[(v-1)pipj„prps+h´]} 对应同余方程w≡h´(mod pipj„prps)。

我们设集合{(2m-pi),(2m-2pi),(2m-3pi),(2m-4pi),(2m-5pi),„,(2m-mipi)}∩{(2m-pj),(2m-2pj),(2m-3pj),(2m-4pj),(2m-5pj),„,(2m-mjpj)}∩„∩{(2m-pr),(2m-2pr),(2m-3pr),(2m-4pr),(2m-5pr),„,(2m-mrpr)}∩{(2m-ps),(2m-2ps),(2m-3ps),(2m-4ps),(2m-5ps),„,(2m-msps)}∩{pe,2pe,3pe,4pe,5pe,„,mepe}∩{pu,2pu,3pu,4pu,5pu,„,mupu}∩„∩{pv,2pv,3pv,4pv,5pv,„,mvpv}∩{pw,2pw,3pw,4pw,5pw,„,mwpw}中的任一奇数均对应同余方程y≡a(modpipj„prpspepu„pvpw)的一个解,则a为小于pipj„prpspepu„pvpw的正整数,因为同余方程组xi≡hi(modpi),xj≡hj(modpj),„,xr≡hr(modpr),xs≡hs(modps)的任一解与pepu„pvpw的乘积关于模M´=pipj„prpspepu„pvpw 同余,由同余性质定理1可知,a=pepu„pvpwh´,我们再设同余方程z≡h´(mod pipj„prpspepu„pvpw),那么在偶数2m范围内,同余方程z≡h´(mod pipj„prpspepu„pvpw)的所有解对应的集合为{ h´,(pipj„prpspepu„pvpw +h´),(2 pipj„prpspepu„pvpw +h´),(3 pipj„prpspepu„pvpw +h´),„,[(u-2)pipj„prpspepu„pvpw +h´],[(u-1)pipj„prpspepu„pvpw +h´]},其中u pipj„prpspepu„pvpw为不大于偶数2m的最大正整数;显然pepu„pvpwh´<

pipj„prpspepu„pvpw,所以在偶数2m范围内,同余方程y≡a(modpipj„prpspepu„pvpw)的所有解对应的集合为{ a,(pipj„prpspepu„pvpw +a),(2pipj„prpspepu„pvpw +a),(3pipj„prpspepu„pvpw +a),„,[(u-2)pipj„prpspepu„pvpw +a],[(u-1)pipj„prpspepu„pvpw+a]},显然(u-1)pipj„prpspepu„pvpw+pepu„pvpwh´<2m。所以a对应pipj„prpspepu„pvpwu,(pipj„prpspepu„pvpw+a)对应pipj„prpspepu„pvp(,(2pipj„wu-1)prpspepu„pvpw+a)对应p1p2p3„pt(u-2),(3p1p2p3„pt+a)对应p1p2p3„p(,„,[(u-1)pipj„prpspepu„pvpw+a]对应pipj„prpspepu„pvpw。tu-3)

所以集合{ pi,2pi,3pi,4pi,5pi,„,mipi }∩{ pj,2pj,3pj,4pj,5pj,„,mjpj }∩„∩{pr,2pr,3pr,4pr,5pr,„,mrpr}∩{ps,2ps,3ps,4ps,5ps,„,ms ps }∩{pe,2pe,3pe,4pe,5pe,„,mepe}∩{pu,2pu,3pu,4pu,5pu,„,mupu}∩„∩{pv,2pv,3pv,4pv,5pv,„,mvpv}∩{pw,2pw,3pw,4pw,5pw,„,mwpw}中正整数的总个数与集合{(2m-pi),(2m-2pi),(2m-3pi),(2m-4pi),(2m-5pi),„,(2m-mipi)}∩{(2m-pj),(2m-2pj),(2m-3pj),(2m-4pj),(2m-5pj),„,(2m-mjpj)}∩„∩{(2m-pr),(2m-2pr),(2m-3pr),(2m-4pr),(2m-5pr),„,(2m-mrpr)}∩{(2m-ps),(2m-2ps),(2m-3ps),(2m-4ps),(2m-5ps),„,(2m-msps)}∩{pe,2pe,3pe,4pe,5pe,„,mepe}∩{pu,2pu,3pu,4pu,5pu,„,mupu}∩„∩{pv,2pv,3pv,4pv,5pv,„,mvpv}∩{pw,2pw,3pw,4pw,5pw,„,mwpw}中正整数的总个数相等。故定理4成立。

参考文献

[1]戎士奎,十章数论(贵州教育出版社)1994年9月第1版

[2]闵嗣鹤,严士健,初等数论(人民教育出版社)1983年2月第6版 [3]刘玉琏,付沛仁,数学分析(高等教育出版社)1984年3月第1版

[4]王文才,施桂芬,数学小辞典(科学技术文艺出版社)1983年2月第1版

二〇一四年四月十九日

第五篇:“哥德巴赫猜想”讲义(第13讲)

“哥德巴赫猜想”讲义

(第13讲)“哥德巴赫猜想”证明(8)

主讲王若仲

第12讲我们讲解了核心部分的定理2,这一讲我们讲核心部分的定理3。

定理3:对于任何一个比较大的偶数2m,设奇素数p1,p2,p3,„,pt均为不大于√2m的全体奇素数(pi< pj,i<j,i、j=1,2,3,„,t),t∈N,且偶数2m均不含有奇素数因子p1,p2,p3,„,pt;那么集合{p1,2p1,3p1,4p1,5p1,„,m1p1}∩{p2,2p2,3p2,4p2,5p2,„,m2p2}∩{p3,2p3,3p3,4p3,5p3,„,m3p3}∩„∩{pt,2pt,3pt,4pt,5pt,„,mtpt}中正整数的总个数与集合{p1,2p1,3p1,4p1,5p1,„,m1p1}∩{p2,2p2,3p2,4p2,5p2,„,m2p2}∩{p3,2p3,3p3,4p3,5p3,„,m3p3}∩„∩{pr,2pr,3pr,4pr,5pr,„,mrpr}∩{(2m-pr+1),(2m-2pr+1),(2m-3pr+1),(2m-4pr+1),(2m-5pr+1),„,(2m-mr+1pr+1)}∩{(2m-pr+2),(2m-2pr+2),(2m-3pr+2),(2m-4pr+2),(2m-5pr+2),„,(2m-mr+2pr+2)}∩{(2m-pr+3),(2m-2pr+3),(2m-3pr+3),(2m-4pr+3),(2m-5pr+3),„,(2m-mr+3pr+3)}∩„∩{(2m-pt),(2m-2pt),(2m-3pt),(2m-4pt),(2m-5pt),„,(2m-mtpt)}中正整数的总个数相等。其中m1p1为对应的集合情形下不大于偶数2m的最大正整数,m2p2为对应的集合情形下不大于偶数2m的最大正整数,m3p3为对应的集合情形下不大于偶数

2m的最大正整数,„,mtpt为对应的集合情形下不大于偶数2m的最大正整数。

证明:对于集合{(2m-pr+1),(2m-2pr+1),(2m-3pr+1),(2m-4pr+1),(2m-5pr+1),„,(2m-mr+1pr+1)},我们令2m-mr+1pr+1=hr+1,因为mr+1pr+1为对应的集合情形下不大于偶数2m的最大正整数,显然hr+1<pr+1,则2m-(mr+1-1)pr+1=2m-mr+1pr+1+pr+1=pr+1+hr+1,2m-(mr+1-2)pr+1=2m-m r+1p

r+1

+2pr+1=2pr+1+hr+1,„,(2m-2pr+1)= 2m-[m r+1-(m r+1-2)]pr+1=(mr+1-2)

pr+1+2m-m r+1pr+1=(m r+1-2)pr+1+hr+1,(2m-pr+1)=2m-[mr+1-(mr+1-1)]pr+1 =(mr+1-1)pr+1+2m-mr+1pr+1 =(mr+1-1)pr+1+hr+1;那么集合{(2m-pr+1),(2m-2pr+1),(2m-3pr+1),(2m-4pr+1),(2m-5pr+1),„,(2m-mr+1pr+1)}={(pr+1-kr+1),(2pr+1-kr+1),(3pr+1-kr+1),„,[(mr+1-1)pr+1-kr+1],(mr+1pr+1-kr+1)}={ hr+1,(pr+1+hr+1),(2pr+1+hr+1),„,[(mr+1-2)pr+1+hr+1],[(mr+1-1)pr+1+hr+1]};我们令2m-mr+2p r+2=hr+2;2m-mr+3pr+3=hr+3;„;2m-mtpt=ht;同理可得:集合{(2m-pr+2),(2m-2pr+2),(2m-3pr+2),(2m-4pr+2),(2m-5pr+2),„,(2m-mr+2pr+2)}={ hr+2,(pr+2+hr+2),(2pr+2+hr+2),„,[(mr+2-2)pr+2+hr+2],[(mr+2-1)pr+2+hr+2]};集合{(2m-pr+3),(2m-2pr+3),(2m-3pr+3),(2m-4pr+3),(2m-5pr+3),„,(2m-mr+3pr+3)}={ hr+3,(pr+3+hr+3),(2pr+3+hr+3),„,[(mr+3-2)pr+3+hr+3],[(mr+3-1)pr+3+hr+3]};„;集合{(2m-pt),(2m-2pt),(2m-3pt),(2m-4pt),(2m-5pt),„,(2m-mtpt)}={ ht,(pt+ht),(2pt+ht),„,[(mt-2)pt+ht],[(mt-1)pt+ht]}。

因为前面令2m-mr+1pr+1=hr+1,2m-mr+2p r+2=hr+2;2m-mr+3pr+3=hr+3;„;

2m-mtpt=ht。那么有2m≡hr+1(modpr+1),2m≡hr+2(modpr+2),2m≡hr+3(modpr+3),„,2m≡ht(modpt);所以集合{(2m-pr+1),(2m-2pr+1),(2m-3pr+1),(2m-4pr+1),(2m-5pr+1),„,(2m-mr+1pr+1)}对应同余方程xr+1≡hr+1(modpr+1);集合{(2m-pr+2),(2m-2pr+2),(2m-3pr+2),(2m-4pr+2),(2m-5pr+2),„,(2m-mr+2pr+2)}对应同余方程xr+2≡hr+2(modpr+2);集合{(2m-pr+3),(2m-2pr+3),(2m-3pr+3),(2m-4pr+3),(2m-5pr+3),„,(2m-mr+3pr+3)}对应同余方程xr+3≡hr+3(modpr+3);„;集合{(2m-pt),(2m-2pt),(2m-3pt),(2m-4pt),(2m-5pt),„,(2m-mtpt)}对应同余方程xt≡ht(modpt)。

由孙子—高斯定理可知,同余方程组x≡h i(modpi)(i= r+1, r+2, r+3,„,t)有无穷多解,且这些解关于模M=pr+1pr+2p r+3„pt同余,因为(p1p2p3„pr,pr+1pr+2p r+3„pt)=1,由同余性质定理1可知,同余方程组x≡hi(modpi)(i= r+1, r+2, r+3,„,t)的任一解与p1p2p3„pr的乘积关于模M´=p1p2p3„prpr+1pr+2p r+3„pt同余,又因为偶数2m是同余方程x≡hr+1(modpr+1)的解,偶数2m也是同余方程x≡h r+2(modp r+2)的解,偶数2m也是同余方程x≡h r+3(modp r+3)的解,„,偶数2m也是同余方程x≡ht(modpt)的解;那么偶数2m也是同余方程组x≡h i(modpi)(i= r+1, r+2, r+3,„,t)的一个解;在偶数2m范围内,同余方程组x≡h i(modpi)(i= r+1, r+2, r+3,„,t)的所有解对应集合{ h´,(pr+1pr+2p r+3„pt+h´),(2pr+1pr+2p r+3„pt+h´),(3pr+1pr+2p

r+3

„pt+h´),„,[(v-2)pr+1pr+2p r+3„pt,+h´],[(v-1)pr+1pr+2p r+3„

pt+h´]},其中vpr+1pr+2p r+3„pt为不大于偶数2m的最大正整数。显然

集合{ h´,(pr+1pr+2p r+3„pt+h´),(2pr+1pr+2p r+3„pt+h´),(3pr+1pr+2p r+3„pt+h´),„,[(v-2)pr+1pr+2p r+3„pt,+h´],[(v-1)pr+1pr+2p r+3„pt+h´]} 对应同余方程w≡h´(modpr+1pr+2p r+3„pt)。

我们设集合{p1,2p1,3p1,4p1,5p1,„,m1p1}∩{p2,2p2,3p2,4p2,5p2,„,m2p2}∩{p3,2p3,3p3,4p3,5p3,„,m3p3}∩„∩{pr,2pr,3pr,4pr,5pr,„,mrpr}∩{(2m-pr+1),(2m-2pr+1),(2m-3pr+1),(2m-4pr+1),(2m-5pr+1),„,(2m-mr+1pr+1)}∩{(2m-pr+2),(2m-2pr+2),(2m-3pr+2),(2m-4pr+2),(2m-5pr+2),„,(2m-mr+2pr+2)}∩{(2m-pr+3),(2m-2pr+3),(2m-3pr+3),(2m-4pr+3),(2m-5pr+3),„,(2m-mr+3pr+3)}∩„∩{(2m-pt),(2m-2pt),(2m-3pt),(2m-4pt),(2m-5pt),„,(2m-mtpt)}中的任一奇数均对应同余方程y≡e(modp1p2p3„prpr+1pr+2p r+3„pt)的一个解,对于同余方程y≡e(modp1p2p3„prpr+1pr+2p r+3„pt),e为小于p1p2p3„pt的正整数,因为同余方程组x≡hi(modpi)(i= r+1, r+2, r+3,„,t)的任一解与p1p2p3„pr的乘积关于模M´=p1p2p3„prpr+1pr+2p r+3„pt同余,由同余性质定理1可知,e=p1p2p3„prh´,根据前面得到的同余方程w≡h´(modpr+1pr+2p r+3„pt),我们再设同余方程z≡h´(modp1p2p3„prpr+1pr+2p r+3„pt),那么在偶数2m范围内,同余方程z≡h´(modp1p2p3„prpr+1pr+2p r+3„pt)的所有解对应的集合为{ h´,(p1p2p3„prpr+1pr+2p r+3„pt+h´),(2p1p2p3„prpr+1pr+2p r+3„pt+h´),(3p1p2p3„prpr+1pr+2p r+3„pt+h´),„,[(u-2)p1p2p3„prpr+1pr+2p r+3„pt+h´],[(u-1)p1p2p3„prpr+1pr+2pr+3„pt+h´]},其中up1p2p3„prpr+1pr+2p r+3„pt为不大于偶数2m的最大正整数;显然p1p2p3„prh´<p1p2p3„prpr+1pr+2p r+3„pt,而

e=p1p2p3„prh´,所以在偶数2m范围内,同余方程y≡e(modp1p2p3„prpr+1pr+2p r+3„pt)的所有解对应的集合为{ e,(p1p2p3„prpr+1pr+2p r+3„pt+e),(2p1p2p3„prpr+1pr+2p r+3„pt+e),(3p1p2p3„prpr+1pr+2p r+3„pt+ e),„,[(u-2)p1p2p3„prpr+1pr+2p r+3„pt+e],[(u-1)p1p2p3„prpr+1pr+2pr+3„pt+e]},显然(u-1)p1p2p3„prpr+1pr+2pr+3„pt+p1p2p3„prh´<2m。所以e对应p1p2p3„ptu,(p1p2p3„pt+e)对应p1p2p3„p(,(2p1p2p3„pt+e)tu-1)对应p1p2p3„p(,(3p1p2p3„pt+e)对应p1p2p3„p(,„,[(u-1)tu-2)tu-3)p1p2p3„pt+e]对应p1p2p3„pt。故集合{p1,2p1,3p1,4p1,5p1,„,m1p1}∩{p2,2p2,3p2,4p2,5p2,„,m2p2}∩{p3,2p3,3p3,4p3,5p3,„,m3p3}∩„∩{pt,2pt,3pt,4pt,5pt,„,mtpt}中正整数的总个数与集合{p1,2p1,3p1,4p1,5p1,„,m1p1}∩{p2,2p2,3p2,4p2,5p2,„,m2p2}∩{p3,2p3,3p3,4p3,5p3,„,m3p3}∩„∩{pr,2pr,3pr,4pr,5pr,„,mrpr}∩{(2m-pr+1),(2m-2pr+1),(2m-3pr+1),(2m-4pr+1),(2m-5pr+1),„,(2m-mr+1pr+1)}∩{(2m-pr+2),(2m-2pr+2),(2m-3pr+2),(2m-4pr+2),(2m-5pr+2),„,(2m-mr+2pr+2)}∩{(2m-pr+3),(2m-2pr+3),(2m-3pr+3),(2m-4pr+3),(2m-5pr+3),„,(2m-mr+3pr+3)}∩„∩{(2m-pt),(2m-2pt),(2m-3pt),(2m-4pt),(2m-5pt),„,(2m-mtpt)}中正整数的总个数相等。故定理3成立。

参考文献

[1]戎士奎,十章数论(贵州教育出版社)1994年9月第1版

[2]闵嗣鹤,严士健,初等数论(人民教育出版社)1983年2月第6版 [3]刘玉琏,付沛仁,数学分析(高等教育出版社)1984年3月第1版

[4]王文才,施桂芬,数学小辞典(科学技术文艺出版社)1983年2月第1版

二〇一四年四月十九日

下载“哥德巴赫猜想”讲义(第10讲)word格式文档
下载“哥德巴赫猜想”讲义(第10讲).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    “哥德巴赫猜想”讲义(第1讲)

    “哥德巴赫猜想”讲义 (第1讲) “哥德巴赫猜想”的来历 主讲王若仲 哥德巴赫(Christian Goldbach),1690年3月18日出生于普鲁士的哥尼斯堡一个官员家庭。当时的普鲁士是德意志的一......

    “哥德巴赫猜想”讲义(第3讲)[五篇范例]

    “哥德巴赫猜想”讲义 (第3讲) “哥德巴赫猜想”历史上的研究方法及其进展(2) 主讲 王若仲 第2讲我们讲了“哥德巴赫猜想”历史上的研究方法及其进展(1),这一讲我们接着讲“哥德巴......

    哥德巴赫猜想范文大全

    求n=a+b: #include using namespace std; int main() {void g(int); intn; cin>>n; if(n>=6)g(n);else cout......

    哥德巴赫猜想范文大全

    哥德巴赫猜想1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。......

    浅谈哥德巴赫猜想[推荐五篇]

    浅谈哥德巴赫猜想 (由来——筛法——哥猜热——个人见解) 谈论哥德巴赫猜想,先从哥德巴赫本人说起。哥德巴赫于1690年3月18日出生于普鲁士柯尼斯堡(现在的俄罗斯加里宁格勒)一个......

    《哥德巴赫猜想》读后感

    前几天,看了青年批评家李云雷的"重读《哥德巴赫猜想》"的文章,《哥德巴赫猜想》读后感。也许文章经过岁月的沉淀,以彼时彼地来看这篇当时曾轰动一时的作品,会更客观和理性,也会......

    哥德巴赫猜想证明方法

    哥德巴赫猜想的证明方法 探索者:王志成 人们不是说:证明哥德巴赫猜想,必须证明“充分大”的偶数有“1+1”的素数对,才能说明哥德巴赫猜想成立吗?今天,我们就来谈如何寻找“充分大......

    浅谈“哥德巴赫猜想”证明方法

    浅谈“哥德巴赫猜想”证明方法 务川自治县实验学校 王若仲 贵州564300 摘要:对于“哥德巴赫猜想”,我们来探讨一种证明方法,要证明任一不小于6的偶数均存在有“奇素数+奇素数......