第一篇:《有理数》导学案
1.2.1《有理数》导学案
□ 自学导读
【学习目标】
1、理解有理数的意义,正确理解整数、分数与有理数之间的关系.2、能将有理数按要求分类,了解0在有理数分类的作用.【重、难点】
有理数的概念及分类.其中有理数的二种分类既是重点,也是难点.【读书思考】
1、有理数及其相关概念
________、________和________统称为整数。________和________统称为分数。________和________统称有理数。
〔注〕因为有限小数和无限循环小数都可以化为分数,所以有限小数和无限循环小数也都是有理数。
2、有理数的分类
(1)按定义分:(2)按符号分:
----------有理数--------
----------有理数------------〔注〕分类要按同一个标准,做到不重复不遗漏。
【典题解析】例1.判断.(1).比0大的数是正数,比0小的数是负数,0不是正数也不是负数。()
(2).温度计中显示0℃时,表示没有温度。((3).有理数分为正有理数和负有理数。((4).有理数分为整数和分数。((5).1是最小的正数。()))))(6).-1是最大的负整数,没有最小的负整数。(2317
例2:把有理数6.4,-9,3,+10,4,-0.021,-1,3,-8.5,25,0,100按正整数、负整数、正分数、负分数分成四个集合。
正整数集合
正分数集合,负整数集合,负分数集合
□ 达标检测
【基础训练】
1、选择题:-100不是()A.有理数;B.自然数;C.整数;D.负有理数。
2、下列说法中,正确的是()
A.0是最小的整数B.1是最小的正整数C.1是最小的整数
个有理数不是正数就是负数 D.一
183.填空:在-7,10.1,-,89,0,-0.67,这些有理数中,65
(1)整数是;
(2)分数是.4.填空:在-45,1,0,8.9,-6,-3.2,+108,-0.05,28,-9这些有理75
数中,(1)正整数是;
(2)负整数是;
(3)正分数是;
(4)负分数是.5、下列说法中正确的是〔〕
A、有最小的自然数,也有最小的整数B、没有最小的正数,但有最小的正整数
C、没有最小的负数,但有最大的负数D、0是有理数中最小的数.6、有公共部分两个数集是〔〕
A、正整数集合与负整数集合B、整数集合与分数集合C、负数集合与整数集合D、负分数集合与正分数集合7、、按某种规律在横线上填上适当的数:1,-4,9,-168、某种商品的标准价格是400元,但随着季节的变化,商品的价格可浮动±5%.(1)±5%的含义分别是什么?
(2)请你算出商品的最高价和最低价;
(3)某商家将该商品的零售价格定在450元,受到物价部门的处罚,请分析处罚原因.探索创新
9、小明说:“整数和分数统称有理数,也可以说成有限小数和无限循环小数统称有理数,因为整数可以看成分母为1的分数,所以任何一个有理数都可以化成分数”小明的说法对吗?你能帮助他解释吗?
10、如果课桌的高度比标准高度高2㎜记作+2㎜,那么比标准高度低3㎜记作什么?现有5张课桌,量得它们的尺寸与标准高度比较分别是+1㎜,-1㎝,0㎜,+3㎜和-1.5㎜,若规定课桌的高度比标准的高度最高不能超过2㎜,最低不能低于2㎜才算合格,那么上述5张课桌有几张合格?
第二篇:有理数的乘法导学案
有理数的乘法导学案(第1课时)
学习目标
1、知识与技能目标:掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标:经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标:通过学生自己探索出法则,让学生获得成功的喜悦。学习重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
教学过程
一、导课:在小学里我们已经学习了正有理数和零的乘法运算,比如3×2 = 6 我们知道:3×2 = 3 + 3= 6
计算下列各式的值:(-2)+(-2)=(-2)+(-2)+(-2)=
(-2)+(-2)+(-2)+(-2)=(-2)+(-2)+(-2)+(-2)+(-2)= 猜想下列各式的值:(-2)×2=(-2)×3=(-2)×4=(-2)×5=
二、设疑自探: 利用以上结论计算下面的算式,你能发现有什么规律?(-3)×3=(-3)×2=(-3)×1=(-3)×0=按照上述的规律,下面的空格里可以各填什么数?从中可以归纳出什么结论?(-3)×(-1)=(-3)×(-2)=(-3)×(-3)=
三、探究归纳:
我们已经知道两个正数相乘结果是正数,现在我们从符号和绝对值两个方面来研究一下三组,看看他们有什么特点
第一组:(-3)×3=-9(-3)×2=-6(-3)×1=-3
第二组:(-3)×(-1)=3(-3)×(-2)=6(-3)×(-3)= 9
第三组:(-3)× 0 =0
有理数乘法法则:两数相乘,得正,得负,并把相乘。任何数与0相乘得。
非0两数相乘,关键(步骤)是什么?
(1)确定积的;(2)求出之积。
例1计算:⑴(-3)×9=⑵(-5)×(-7)=
(3)9×(-1)=(4)(-9)×(-1)=
(5)(-6)×(-1)=(6)6×(-1)=
归纳:一个数乘以(-1)得到
例2计算(-111)×(-2)=3× =(-3)×(-)=233
归纳:乘积是1的两个数互为。
四、课堂练习: 30页练习题
五、运用拓展:
1、自编习题
第1、2题:正整数相乘、正分数相乘;第3、4题:负整数相乘、负分数相乘
第5、6题:与
1、-1相乘;第7、8题:正数、负数分别于0相乘
第9题:正整数与正分数相乘;第10题:负整数与负分数相乘
2、填空(用“>”或“<”号连接):
(1)如果a<0,b<0,那么ab0;(2)如果a<0,b > 0,那么ab0;
(3)如果 a > 0,b > 0,那么ab0
(4)如果ab<0,那么a0,b0或者a0,b0
(5)如果 ab > 0,那么a0,b0或者 a0,b0
(6)如果 ab = 0,那么___________
3、计算:(1).(-6)×(-4+1-6)(2).(-3.7+1.3)×
3(3).(16-26+5)×(-3.4-1.6)(4).︳-21-19︳×(-2.9+1.1)
六、小结:
1、本节课你学到了什么?
2、本节课你印象最深的是什么?
第三篇:有理数除法导学案7
有理数的除法导学案
学习目标:
1、使学生了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算。
2、让学生理解有理数倒数的意义,了解有理数除法也可分为商的符号确定和绝对值运算两部分组成。
3、知道除法是乘法的逆运算,0不能作除数,培养学生的逆向思维。
学习重难点:
重点:有理数的除法法则和倒数概念。
难点:对0不能作除数与0没有倒数的理解,以及乘法与除法的互换。
自学指导
一、预习课文53----54页有关知识填空
1、倒数:
(注意:一个正有理数的倒数仍是正有理数;一个负有理数的倒数仍是负有理数;0没有倒数。即:a(a≠0)的倒数是1/a,0没有倒数。)
2、除以一个不等于零的数,等于乘以这个数的,用字母表示为:a÷b=。(注意:这表明除法可以转化为乘法来进行)
3、同号两数相除得,异号两数相除得,零除以任何一个不等于零的数都得。合作探究
1.写出下列各数的倒数:
(1)5/6;(2)3/7;(3)–5;(4)1;(5)–1;(6)0.22、计算下列各题:
(1)(-18)÷6;(2)(-1/5)÷(-2/5);(3)6/25÷(-4/5)。
注意:先确定符号,再算数值。
3、简下列分数:
(1)-12-24(2)4-16
解:
4、算下列各题:
(1)(解:-17417473-)÷(-6);(2)-3.5÷×(-)。6846
能力提升
6733.5246784
1、计算:(1)(2)
2、下列计算正确吗?为什么?
3÷11 ÷44
=3÷1
=3
达标测评
1、若ab<0,则a/b的值是()
A、大于0B、小于0C、大于或等于0D、小于或等于02、下列说法正确的是()
A、任何数都有倒数B、-1的倒数是-1
C、一个数的相反数必是分数D、一个数的倒数必小于13、若x=1/x,则x=。
4、倒数等于它本身的数是。
5、若a、b互为倒数,则ab=。
6、计算:
(1)((3)(-
3.化简下列分数:-3618)÷6(2)(-18)÷(-12)÷(-)55395)÷3(4)(-6)÷(-4)÷(-)44
(1)212547(2)(3)(4)1871
2我的收获:
1、有理数的除法是乘法的逆运算,会求一个数的倒数。
2、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
3、0不能作除数。
第四篇:青岛版有理数除法导学案
有理数的除法导学案
教学目标:
1、使学生了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算。
2、让学生理解有理数倒数的意义,了解有理数除法也可分为商的符号确定和绝对值运算两部分组成。
3、知道除法是乘法的逆运算,0不能作除数,培养学生的逆向思维。
教学重难点:
重点:有理数的除法法则和倒数概念。
难点:对0不能作除数与0没有倒数的理解,以及乘法与除法的互换。
课前预习
1、同号两数相除得,异号两数相除得,零除以任何一个不等于零的数都得。
2、除以一个不等于零的数,等于乘以这个数的,用字母表示为:a÷b=。
课堂探究
导入新课
与小学学过的一样,除法是乘法的逆运算。这里与小学所学不同的是被除数和除数可以是任意有理数(0作除数除外)例1 计算:(-6)÷2。
这也就是要求一个数“?”,使(?)×2=-6。
根据有理数的乘法运算,有(-3)×2=-6,所以(-6)÷2=-3。另外,我们知道:(-6)×
12=-3,所以(-6)÷2=(-6)×
12。
这表明除法可以转化为乘法来进行。练习:
填空:① 8÷(-2)=8×(); ② 6÷(-3)=6×(); ③ -6÷()=-6×; ④ -6÷()=-6×
3123。
做完填空后,同学们有什么发现?
对于有理数仍然有:乘积是1的两个数互为倒数,如:2与别互为倒数。
12、-2与-
12分因此,一个正有理数的倒数仍是正有理数;一个负有理数的倒数仍是负有理数;0没有倒数。
即:a(a≠0)的倒数是
1a,0没有倒数。
这样,有理数的除法都可以转化为乘法,即: 除以一个数等于乘以这个数的倒数。用式子表示为:a÷b=a×
1b,(b≠0)。注意:0不能作除数。
例2 规定向东为正,向西为负。
一人向东走了15千米,用了3小时,问平均1小时向东走多少千米? 一人向西走了15千米,用了3小时,问平均1小时向西走多少千米? 第一个人向西走了15千米,第二个人向西走了3千米,问第一个人走的路程是第二个人走的路程的几倍?
因为除法可化为乘法,所以与乘法类似有有理数除法法则: 两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。例1 计算下列各题:
(1)(-18)÷6;(2)(-)÷(-);(3)
5512625÷(-
45)。
解:略
注意:先确定符号,再算数值。例
2、简下列分数:(1)123;(2)
2416。
解:略。
例
3、算下列各题:(1)(-24解:略。巩固练习: 67)÷(-6);(2)-3.5÷
78×(-
34)。
1.写出下列各数的倒数:(1)56;(2)37;(3)–5;(4)1;(5)–1;(6)0.2 2.计算:(1)363;(2)
212(3)16(4)05
7380.2(5)(6)84
3.计算: 3934(1)
(2)(-6)÷(-4)÷(-
114)
4.下列计算正确吗?为什么?
3141113313444
四、课堂小结
1、有理数的除法是乘法的逆运算,会求一个数的倒数。
2、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。3、0不能作除数。
课后延伸
1、若ab<0,则ab的值是()
A、大于0 B、小于0 C、大于或等于0 D、小于或等于0
2、下列说法正确的是()
A、任何数都有倒数 B、-1的倒数是-1 C、一个数的相反数必是分数 D、一个数的倒数必小于1
3、若x=1x,则x=。
4、倒数等于它本身的数是。
5、若a、b互为倒数,则ab=。
6、计算:(1)(-934)÷3 15(2)641 4.下列计算正确吗?为什么?
3141113313 444
六、教(学)后反思
第五篇:导学案:有理数的乘方2
导学案:有理数的乘方(2)
学习目标:
1、熟练进行有理数的混合运算
2、及时纠正运算中的错误,进一步培养学生正确迅速的运算能力,培养学生严谨的学习态度
重难点:有理数的四则混合运算
一、自主学习:
(一)复习回顾:
1、有理数的加、减、乘、除及乘方的运算法则
2、加入乘方后,有理数的混合运算的顺序如何?
(二)导学:
有理数的混合运算顺序:(1)先,再,最后;(2)同级运算,从左到右进行;(3)如有括号,先做的运算,按小括号、中括号、大括号依次进行。
方法规律:
(1)有理数运算分三级运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第级运算。
运算顺序是:先算高级运算,再算运算;同级运算,再按从左至右的顺序运算。
(2)在运算过程中注意运算律的运用
(三)完成P43例3及P44的练习
二、合作探究
1、计算:
114(1)×(2)311÷(2)÷ 425
33(2)121(12)÷6×(-3 47
33519143(3)(-3()22(1)3()2()3 25194925222、观察下面行数:
①-3,9,-27,81,-243,729,…
② 0,12,-24,84,-240,732,…
③-1,3,-9,27,-81,243,…
(1)第①行数有什么规律?
(2)第②行数与第①行数有什么关系?
(3)第③行数与第①行数有什么关系?
(3)取每行数的第10个数,计算这三个数的和
三、学习致用:
332211×23÷3(3)3÷(1、计算:2)
2、x、y为有理数,且x12(y3)20,求x23xy2y2的值;
3、(0.25)
2009×420104、一根1米长的绳子,第一次剪去11,第二次剪去剩下的,如此剪下去,第22
六次后剩下的绳子还有1厘米长吗?为什么?
四、能力提升 已知ab2(b1)20,值。
试求111ab(a1)(b1)1(a2)(b2)a(3)(b的3)