人工智能学习

时间:2019-05-13 04:07:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人工智能学习》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人工智能学习》。

第一篇:人工智能学习

人工智能学习-知识要点总结 [Nirvana 发表于 2005-1-2 13:32:24]

人工智能是在计算机科学、控制论、信息论、神经心理学、哲学、语言学等多种学科研究的基础上发展起来的,是一门综合性边缘学科,延伸人脑的功能,实现了脑力劳动的自动化。

1、认知科学认为智能的核心是思维,知识阙值理论认为智能行为取决于知识的数量及其一般化程度,智能就是在巨大搜索空间中迅速找到一个满意解的能力;进化理论的核心是用控制取代表示,取消概念、模型及显示表示知识,否定抽象对于智能及智能模拟的必要性,强调分结构对于智能进化的可能性与必要性。综合上述观点,认为智能是知识与智力的总和,具有如下特征:

(1)记忆与思维能力,(2)学习能力及自适应能力,(3)行为能力。

人工智能是人造智能,是一门研究如何构造智能机器(智能计算机)或智能系统,使它能模拟、延伸、扩展人类智能的学科。通过图灵测试可以判断一个系统是否具有智能和智能的水平。

人工智能研究内容:

(1)机器感知(2)机器思维(3)机器学习(4)机器行为(5)智能系统构造技术

人工智能研究途径:

(1)符号处理(2)网络连接机制(3)系统集成2、知识是智能的基础,对人工智能的研究必须以知识为中心来进行,由于对知识的表示、利用、获取等的研究取得较大进展,特别是不确定性知识表示与推理取得的突破,建立了主观Bayes理论、确定性理论、证据理论、可能性理论,对人工智能其他领域(如模式识别,自然语言理解等)的发展提供了支持。数据是信息的载体和表示,信息是数据在特定场合的具体含义,信息是数据的语义;把有关信息关联在一起所形成的信息结构叫知识。具有:相对正确性,不确定性,可表示性,可利用性等特征;按作用范围分为常识性知识,领域性知识;按作用及表示分为事实性知识,过程性知识,控制性知识。按确定性分为确定性知识,不确定性知识;按结构及表现形式分为逻辑性知识,形象性知识;从抽象的,整体的观点来划分可分为零级知识,一级知识,二级知识。知识表示方法总体上分为符号表示法,连接机制表示法;目前用得较多的知识表示方法主要有:一阶谓词逻辑表示,产生式,框架,语义网络,脚本,过程,Petrio网,面向对象表示法。选择知识表示法时,要注意以下几个方面:

(1)充分表示领域知识(2)有利于对知识的利用(3)便于对知识的组织、维护与管理(4)便于理解和实现

3、产生式系统构成:规则库,控制系统,综合数据库。综合数据库中已知事实表示:(特性 对象 值可信度因子)控制系统的求解过程是一个不断地从规则库中选取可用规则与综合数据库中已知事实进行匹配的过程。产生式系统分类:按推理方向分为前向、后向和双向产生式系统;按表示知识的确定性可分为确定性及不确定性产生式系统;按数据库性质及结构特征进行分类为可交换的产生式系统,可分解的产生式系统,可恢复的产生式系统。框架是一种描述所论对象属性的数据结构,由槽结构组成,槽分为若干侧面。问题求解主要通过匹配和填槽实现的;产生式表示法主要用于描述事物间的因果关系,框架表示法主要用于描述事物内部结构及事物间的类属关系。语义网络是通过概念及其语义关系来表达知识的一种网络图。一个过程规则包括激发条件,演绎操作,状态转换及返回四个部分。

4、推理就是按某种策略由已知判断推出另一判断的思维过程。按从新判断推出的途径来划分,推理可分为演绎推理、归纳推理和默认推理;按所用知识确定性分为确定性推理,不确定性推理;按推出的结论是否单调地增加来划分为单调推理,非单调推理;按是否运用与问题有关的启发性知识分为启发式推理,非启发式推理;按基于方法的分为基于知识的推理,统计推理,直觉推理。推理的控制策略:推理方向,搜索策略,冲突消解策略,求解策略和限制策略。推理方向可确定推理的驱动方式:正向推理,逆向推理,混合推理及双向推理。

从一组已知为真的事实出发,直接运用经典逻辑的推理规则推出结论的过程称为自然演绎推理,基本推理规则是P规则,T规则,假言推理,拒绝式推理等:

P规则:任何步骤可引入前提A

T规则:前面步骤有一个或多个公式永真蕴涵公式S,可引入S

假言推理:P,P—>Q=> Q

拒绝式推理:P—>Q, 非Q=>非P

归结演绎推理中,空字句是不满足的,因此归结的目标是通过归结使字句集中包含空字句,从而证明原命题的不可满足性。归结式是亲本字句的逻辑结论。

不确定性推理是从不确定性的初始证据出发,通过运用不确定性的知识,最终推出具有一定程度的不确定性但却是合理或者近乎合理的理论的思维过程。

不确定推理的基本问题:推理方向,推理方法,控制策略,不确定性的表示和度量,不确定性匹配,不确定性传递算法,不确定性的合成。

知识的不确定性称为知识的静态强度;证据的不确定性称为动态强度

5、组合证据的不确定性算法:

最大最小方法

概率方法

有界方法

不确定性传递算法:

结论不确定性的合成:

6、主观Bayes方法:

(1)知识不确定性表示(产生式规则):

(2)证据不确定性表示:

(3)组合证据不确定性的算法:

(4)不确定性传递算法:

(5)结论不确定性的合成算法:

7、可信度方法:(C-F模型是基于可信度表示的不确定性推理的基本方法)

在可信度推理方法中的C-F模型里,可信度CF(H,E)的含义是:CF(H,E)>0表示E的出现增加了H的可信度;CF(H,E)=0表示E的出现与H可信度无关;CF(H,E)<0表示E的出现降低了H的可信度。

(1)知识不确定性表示:

(2)证据不确定性表示:

(3)组合证据不确定性算法:

(4)不确定性传递算法:

(5)结论不确定性合成算法(推理网络):

8、证据理论是用集合表示命题的,D是变量x所有可能取值的集合,且D中的元素是互斥的,在任一时刻x都取且只能取D中某一元素为值,则称D为x的样本空间。

信任函数与似然函数的关系:Pl(A)>=Bel(A), Bel(A)表示对A为真的信任程度,Pl(A)表示对A为非假的信任程度。Pl(A)-Bel(A)表示对A不知道的程度,即既非对A信任又不信任的那部分。

知识的不确定表示:IF E THEN H={h1,h2,…,hn} CF={c1,c2,…,cn}CF是可信度因子

含有模糊概念、模糊数据或带有确信程度的语句称为模糊命题。一般表示形式为:

x is A(CF)x是论域上的变量,A是模糊数,CF是该模糊命题的确信程度或

相应事件发生的可能性程度。

10、人工智能解决的问题:结构不良,非结构化;盲目搜索按预定的控制策略进行搜索,在搜索过程中获得的中间信息不用来改进控制策略;启发式搜索加入了与问题有关的启发性信息,用以指导搜索朝着最有希望的方向前进,加速问题的求解过程并找到最优解。

状态空间表示法:(S,F,G)

11、专家系统就是一种在相关领域中具有专家水平解题能力的智能程序系统,它能运用领域专家多年积累的经验与专门知识,模拟人类专家的思维过程,求解需要专家才能解决的困难问题。

特征:专家知识,有效推理,获取知识能力,灵活性,透明性,交互性,复杂性

专家系统与常规计算机程序比较:*

(1)常规程序=数据结构+算法,专家系统=知识+推理

(2)常规程序分为数据级+程序级,专家系统数据级+知识库级+控制级

(3)常规程序面向数值计算和数据处理,专家系统本质上是面向符号处理的(4)常规程序处理的数据多是精确的,专家系统处理不精确,模糊知识

(5)解释功能

(6)都是程序系统

12、机器学习是要使计算机能模拟人的学习行为,自动地通过学习获取知识和技能,不断改善性能,实现自我完善:

三个方面的研究内容:(1)学习机理研究(2)学习方法研究(3)面向任务研究

学习系统是指能够在一定程度上实现机器学习的系统,能够从某个过程或环境的未知特征中学到有关信息,并且能把学到的信息用于未来的估计、分类、决策或控制,以便改进系统的性能。在结构上主要包括:学习环境,学习机构,执行与评估机构和知识库四个部分;各种符号学习方法中推理能力最强的学习方法是机械式学习,推理能力最弱的方法是观察和发现,神经网络学习获得的知识被存储在神经元之间的连接中。

学习系统具有的条件能力:

(1)具有适当的学习环境

(2)具有一定学习能力

(3)能应用学到的知识求解问题

(4)能提高系统的性能

第二篇:《人工智能》学习报告

深圳大学硕士研究生课程作业—人工智能

《人工智能》学习报告

深圳大学机电与控制工程学院彭建柳

学号:0943010210

1.引言

人工智能(Artificial Intelligence,AI),曾经有一部电影,著名导演斯蒂文•斯皮尔伯格的科幻片《人工智能》(A.I.)对许多人的头脑又一次产生了震动,引起了一些人士了解并探索人工智能领域的兴趣。人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(MIT)、卡内基-梅隆大学(CMU)到IBM公司,再到日本的本田公司、SONY公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着AI技术的实验。

一直以来,关于人工智能的理论,我一直认为是科学的前沿,理解起来较为飘渺。但是,从本学期《人工智能》课程的学习中,本人较系统的接触到了关于人工智能的理论,从有限的课程中,通过老师的详细介绍和查阅人工智能方面的书籍,学习了关于人工智能几个主要方面的知识,如模糊控制、专家系统、神经网络等。下面是本人关于人工智能理论的一些基本认识。

2.人工智能的形成与发展

说到人工智能,首先先认识下自动控制理论,自动控制理论从形成到发展至今,已经经历了六十多年的历程,其主要分为三个阶段:

务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。

随着人工智能和计算机技术的发展,已经有可能把自动控制和人工智能以及系统科学中一些有关学科分支(如系统工程、系统学、运筹学、信息论)结合起来,建立一种适用于复杂系统的控制理论和技术。智能控制正是在这种条件下产生的。它是自动控制技术的最新发展阶段,也是用计算机模拟人类智能进行控制的研究领域。1965年,傅京孙首先提出把人工智能的启发式推理规则用于学习控制系统。1985年,在美国首次召开了智能控制学术讨论会。1987年又在美国召开了智能控制的首届国际学术会议,标志着智能控制作为一个新的学科分支得到承认。智能控制具有交叉学科和定量与定性相结合的分析方法和特点。

3.模糊控制

在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的。然而,对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,于是工程师便利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想。换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了。因此便尝试着以模糊数学来处理这些控制问题。通过课堂中,导师生动的讲解,以及引用到生活当中鲜活的例子,如冰箱温度的模糊控制,智能汽车的行驶路线控制等等,充分的认识到,模糊控制在当今社会的应用已经很广泛,只是理论知识的缺乏而感觉不到它们的存在。

一般控制架构包括:定义变量、模糊化、知识库、逻辑判断及反模糊化,详细如下:

(1)定义变量:也就是决定程序被观察的状况及考虑控制的动作,例如在一般控制问题上,输入变量有输出误差E与输出误差之变化率CE,而控制变量

则为下一个状态之输入U。其中E、CE、U统称为模糊变量。

(2)模糊化(fuzzify):将输入值以适当的比例转换到论域的数值,利用口语化变量来描述测量物理量的过程,依适合的语言值(linguisitc value)求该值相对之隶属度,此口语化变量我们称之为模糊子集合(fuzzy subsets)。

(3)知识库:包括数据库(data base)与规则库(rule base)两部分,其中数据库是提供处理模糊数据之相关定义;而规则库则藉由一群语言控制规则描述控制目标和策略。

(4)逻辑判断:模仿人类下判断时的模糊概念,运用模糊逻辑和模糊推论法进行推论,而得到模糊控制讯号。此部分是模糊控制器的精髓所在。

(5)解模糊化(defuzzify):将推论所得到的模糊值转换为明确的控制讯号,做为系统的输入值。

模糊控制很重要的一点就是模糊规则的制定,其规则制定的来源主要由专家的经验和知识、操作员的操作模式、自学习提供。模糊规则的形式则分为状态评估和目标评估两种。但都是以模糊控制为基础,达到自动控制的目的。

4.专家系统

专家系统(expert system)是人工智能应用研究最活跃和最广泛的课题之

一。运用特定领域的专门知识,通过推理来模拟通常由人类专家才能解决的各种复杂的、具体的问题,达到与专家具有同等解决问题能力的计算机智能程序系统。它能对决策的过程作出解释,并有学习功能,即能自动增长解决问题所需的知识。

专家系统的发展已经历了3个阶段,正向第四代过渡和发展。第一代专家系统(dendral、macsyma等)以高度专业化、求解专门问题的能力强为特点。但在体系结构的完整性、可移植性等方面存在缺陷,求解问题的能力弱。第二代专家系统(mycin、casnet、prospector、hearsay等)属单学科专业型、应用型系统,其体系结构较完整,移植性方面也有所改善,而且在系统的人机接口、解释机制、知识获取技术、不确定推理技术、增强专家系统的知识表示和推理方法的启发性、通用性等方面都有所改进。第三代专家系统属多学科综合型系统,采用多种人工智能语言,综合采用各种知识表示方法和多种推理机制及控制策略,并开始运用各种知识工程语言、骨架系统及专家系统开发工具和

环境来研制大型综合专家系统。在总结前三代专家系统的设计方法和实现技术的基础上,已开始采用大型多专家协作系统、多种知识表示、综合知识库、自组织解题机制、多学科协同解题与并行推理、专家系统工具与环境、人工神经网络知识获取及学习机制等最新人工智能技术来实现具有多知识库、多主体的第四代专家系统。

对专家系统可以按不同的方法分类。通常,可以按应用领域、知识表示方法、控制策略、任务类型等分类。如按任务类型来划分,常见的有解释型、预测型、诊断型、调试型、维护型、规划型、设计型、监督型、控制型、教育型等。

简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。

5.神经网络

由于神经网络是多学科交叉的产物,各个相关的学科领域对神经网络都有各自的看法,因此,关于神经网络的定义,在科学界存在许多不同的见解。目前使用得最广泛的是T.Koholen的定义,即“神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。”

人工神经网络是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

6.小结

关于人工智能的学习,我现在所学习到的仅仅是皮毛。但对于一个刚刚接触人工智能学习的学生,了解如模糊控制、专家系统、神经网络等人工智能的知识入门尤为重要,为将来进一步学习人工智能的理论打下基础,并将理论应用于生活和工作当中,这才是学习的最终目的。

参考文献:

《人工智能控制》作者:蔡自兴,出 版 社:化学工业出版社,2005-7-1

第三篇:人工智能学习论文

20107932唐雪琴

人工智能研究最新进展综述

一、研究领域

在大多数数学科中存在着几个不同的研究领域,每个领域都有着特有的感兴趣的研究课题、研究技术和术语。在人工智能中,这样的领域包括自然语言处理、自动定理证明、自动程序设计、智能检索、智能调度、机器学习、专家系统、机器人学、智能控制、模式识别、视觉系统、神经网络、agent、计算智能、问题求解、人工生命、人工智能方法、程序设计语言等。

在过去50多年里,已经建立了一些具有人工智能的计算机系统;例如,能够求解微分方程的,下棋的,设计分析集成电路的,合成人类自然语言的,检索情报的,诊断疾病以及控制控制太空飞行器、地面移动机器人和水下机器人的具有不同程度人工智能的计算机系统。人工智能是一种外向型的学科,它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,也就说什么地方有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。参照人在各种活动中的功能,我们可以得到人工智能的领域也不过就是代替人的活动而已。哪个领域有人进行的智力活动,哪个领域就是人工智能研究的领域。人工智能就是为了应用机器的长处来帮助人类进行智力活动。人工智能研究的目的就是要模拟人类神经系统的功能。

二、各领域国内外研究现状(进展成果)近年来,人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸和扩展。在新世纪开始的时候,这些新研究已引起人们的更密切关注。这些新领域有分布式人工智能与艾真体(agent)、计算智能与进化计算、数据挖掘与知识发现,以及人工生命等。下面逐一加以概略介绍。

1、分布式人工智能与艾真体

分布式人工智能(Distributed AI,DAI)是分布式计算与人工智能结合的结果。DAI系统以鲁棒性作为控制系统质量的标准,并具有互操作性,即不同的异构系统在快速变化的环境中具有交换信息和协同工作的能力。

分布式人工智能的研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型。DAI中的智能并非独立存在的概念,只能在团体协作中实现,因而其主要研究问题是各艾真体间的合作与对话,包括分布式问题求解和多艾真体系统(Multiagent System,MAS)两领域。其中,分布式问题求解把一个具体的求解问题划分为多个相互合作和知识共享的模块或结点。多艾真体系统则研究各艾真体间智能行为的协调,包括规划、知识、技术和动作的协调。这两个研究领域都要研究知识、资源和控制的划分问题,但分布式问题求解往往含有一个全局的概念模型、问题和成功标准,而MAS则含有多个局部的概念模型、问题和成功标准。

MAS更能体现人类的社会智能,具有更大的灵活性和适应性,更适合开放和动

态的世界环境,因而倍受重视,已成为人工智能以至计算机科学和控制科学与工程的研究热点。当前,艾真体和MAS的研究包括理论、体系结构、语言、合作与协调、通讯和交互技术、MAS学习和应用等。MAS已在自动驾驶、机器人导航、机场管理、电力管理和信息检索等方面获得应用。

2、计算智能与进化计算

计算智能(Computing Intelligence)涉及神经计算、模糊计算、进化计算等研究领域。其中,神经计算和模糊计算已有较长的研究历史,而进化计算则是较新的研究领域。在此仅对进化计算加以说明。

进化计算(Evolutionary Computation)是指一类以达尔文进化论为依据来设计、控制和优化人工系统的技术和方法的总称,它包括遗传算法(Genetic Algorithms)、进化策略(Evolutionary Strategies)和进化规划(Evolutionary Programming)。它们遵循相同的指导思想,但彼此存在一定差别。同时,进化计算的研究关注学科的交叉和广泛的应用背景,因而引入了许多新的方法和特征,彼此间难于分类,这些都统称为进化计算方法。目前,进化计算被广泛运用于许多复杂系统的自适应控制和复杂优化问题等研究领域,如并行计算、机器学习、电路设计、神经网络、基于艾真体的仿真、元胞自动机等。

达尔文进化论是一种鲁棒的搜索和优化机制,对计算机科学,特别是对人工智能的发展产生了很大的影响。大多数生物体通过自然选择和有性生殖进行进化。自然选择决定了群体中哪些个体能够生存和繁殖,有性生殖保证了后代基因中的混合和重组。自然选择的原则是适者生存,即物竞天择,优胜劣汰。

直到几年前,遗传算法、进化规划、进化策略三个领域的研究才开始交流,并发现它们的共同理论基础是生物进化论。因此,把这三种方法统称为进化计算,而把相应的算法称为进化算法。

3、数据挖掘与知识发现

知识获取是知识信息处理的关键问题之一。20世纪80年代人们在知识发现方面取得了一定的进展。利用样本,通过归纳学习,或者与神经计算结合起来进行知识获取已有一些试验系统。数据挖掘和知识发现是90年代初期新崛起的一个活跃的研究领域。在数据库基础上实现的知识发现系统,通过综合运用统计学、粗糙集、模糊数学、机器学习和专家系统等多种学习手段和方法,从大量的数据中提炼出抽象的知识,从而揭示出蕴涵在这些数据背后的客观世界的内在联系和本质规律,实现知识的自动获取。这是一个富有挑战性、并具有广阔应用前景的研究课题。

从数据库获取知识,即从数据中挖掘并发现知识,首先要解决被发现知识的表达问题。最好的表达方式是自然语言,因为它是人类的思维和交流语言。知识表示的最根本问题就是如何形成用自然语言表达的概念。

机器知识发现始于1974年,并在此后十年中获得一些进展。这些进展往往与专家系统的知识获取研究有关。到20世纪80年代末,数据挖掘取得突破。越来越多的研究者加入到知识发现和数据挖掘的研究行列。现在,知识发现和数据挖掘已成为人工智能研究的又一热点。

比较成功的知识发现系统有用于超级市场商品数据分析、解释和报告的CoverStory系统,用于概念性数据分析和查寻感兴趣关系的集成化系统EXPLORA,交互式大型数据库分析工具KDW,用于自动分析大规模天空观测数据的SKICAT系统,以及通用的数据库知识发现系统KDD等。

4、人工生命

人工生命(Artificial Life,ALife)的概念是由美国圣菲研究所非线性研究组的兰顿(Langton)于1987年提出的,旨在用计算机和精密机械等人工媒介生成或构造出能够表现自然生命系统行为特征的仿真系统或模型系统。自然生命系统行为具有自组织、自复制、自修复等特征以及形成这些特征的混沌动力学、进化和环境适应。

人工生命所研究的人造系统能够演示具有自然生命系统特征的行为,在“生命之所能”(life as it could be)的广阔范围内深入研究“生命之所知”(life as we know it)的实质。只有从“生命之所能”的广泛内容来考察生命,才能真正理解生物的本质。人工生命与生命的形式化基础有关。生物学从问题的顶层开始,把器官、组织、细胞、细胞膜,直到分子,以探索生命的奥秘和机理。人工生命则从问题的底层开始,把器官作为简单机构的宏观群体来考察,自底向上进行综合,把简单的由规则支配的对象构成更大的集合,并在交互作用中研究非线性系统的类似生命的全局动力学特性。

人工生命的理论和方法有别于传统人工智能和神经网络的理论和方法。人工生命把生命现象所体现的自适应机理通过计算机进行仿真,对相关非线性对象进行更真实的动态描述和动态特征研究。

人工生命学科的研究内容包括生命现象的仿生系统、人工建模与仿真、进化动力学、人工生命的计算理论、进化与学习综合系统以及人工生命的应用等。比较典型的人工生命研究有计算机病毒、计算机进程、进化机器人、自催化网络、细胞自动机、人工核苷酸和人工脑等。

三、学了人工智能课程的收获

(1)了解人工智能的概念和人工智能的发展,了解国际人工智能的主要流派和路线,了解国内人工智能研究的基本情况,熟悉人工智能的研究领域。

(2)较详细地论述知识表示的各种主要方法。重点掌握了状态空间法、问题归约法和谓词逻辑法,熟悉语义网络法,了解知识表示的其他方法,如框架法、剧本法、过程法等。

(3)掌握了盲目搜索和启发式搜索的基本原理和算法,特别是宽度优先搜索、深度优先搜索、等代价搜索、启发式搜索、有序搜索、A*算法等。了解博弈树搜索、遗传算法和模拟退火算法的基本方法。

(4)掌握了消解原理、规则演绎系统和产生式系统的技术、了解不确定性推理、非单调推理的概念。

(5)概括性地了解了人工智能的主要应用领域,如专家系统、机器学习、规划系统、自然语言理解和智能控制等。

(6)基本了解人工智能程序设计的语言和工具。

四、对人工智能研究的展望

对现代社会的影响有多大?工业领域,尤其是制造业,已成功地使用了人工智能技术,包括智能设计、虚拟制造、在线分析、智能调度、仿真和规划等。金融业,股票商利用智能系统辅助其分析,判断和决策;应用卡欺诈检测系统业已得到普遍应用。人工智能还渗透到人们的日常生活,CAD,CAM,CAI,CAP,CIMS等一系列智能产品给大家带来了极大的方便,它还改变了传统的通信方式,语音拨号,手写短信的智能手机越来越人性化。

人工智能还影响了你们的文化和娱乐生活,引发人们更深层次的精神和哲学层面的思考,从施瓦辛格主演的《终结者》系列,到基努.里维斯主演的《黑客帝国》系列以及斯皮尔伯格导演的《人工智能》,都有意无意的提出了同样的问题:我们应该如何看待人工智能?如何看待具有智能的机器?会不会有一天机器的智能将超过人的智能?问题的答案也许千差万别,我个人认为上述担心不太可能成为现实,因为我们理解人工智能并不是让它取代人类智能,而是让它模拟人类智能,从而更好地为人类服务。

当前人工智能技术发展迅速,新思想,新理论,新技术不断涌现,如模糊技术,模糊--神经网络,遗传算法,进化程序设计,混沌理论,人工生命,计算智能等。以Agent概念为基础的分布式人工智能正在异军突起,特别是对于软件的开发,“面向Agent技术”将是继“面向对象技术”后的又一突破。从万维网到人工智能的研究正在如火如荼的开展。

五、对课程的建议

(1)能够结合现在最新研究成果着重讲解重点知识,以及讲述在一些研究成果中人工智能那些知识被应用。

(2)多推荐一些过于人工智能方面的电影,如:《终结者》系列、《黑客帝国》

系列、《人工智能》等,从而增加同学对这门课程学习的兴趣。

(3)条件允许的话,可以安排一些实验课程,让同学们自己制作一些简单的作品,增强同学对人工智能的兴趣,加强同学之间的学习。

(4)课堂上多讲解一些人工智能在各个领域方面的应用,以及着重阐述一些

新的和正在研究的人工智能方法与技术,让同学们可以了解近期发展起来的方法和技术,在讲解时最好多举例,再结合原理进行讲解,更助于同学们对人工智能的理解。

第四篇:《人工智能导论》学习心得体会

《人工智能导论》学习心得

大学第一次接触《人工智能导论》这门课,通过老师的讲解,我对人工智能有了一些简单的感性认识,我觉得人工智能是一门具有挑战性的科学,想要学好这门课程必须要懂得计算机知识以及基本的算法认识。人工智能包括了十分广泛的科学,它由不同的领域组成,例如机器学习,计算机视觉等,总的来说,人工智能研究的主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。虽然在此门课程中对算法的实现不能独立完成,但在一些简单的基本的算法上还是有一定的理解和认识。我也在此次课程设计的过程中不断的学习,反复的调式和思考问题,终于在我的坚持下能够很好地理解算法转换为实际代码的过程,也对算法有了更加清晰的思路。因此,我更加确信在自己的不断努力下总是会有收获的,只有坚持下去,才有成功的希望。

人工智能在很多领域得到了发展川在我们的日常生活中发挥了重要的作用。如:机器翻译,机器翻译是利用计算机把一种自然语言转换成其他语言的过程。用以完成这一过程的软件系统叫做机器翻译系统,利用这个系统我们可以很方使的完成一些语言翻译工作。目前,照内的机器翻译软件有很多,富有代表性的当属金山,它可以迅速的咨询英文单词和句子翻译,重要的是它还可以提供多种语言为用户提供了极大的便利。

人工智能:像人一样思考,理性的思考;像人一样行动,理性的行动,如果你与一台机器进行对话,它能回答你的问题并且感受不到是机器在回答的话,就说这台机器具有智能。当然并不是通过测试就说明有智能,但现阶段的研究主要还是弱人工智能:模仿人脑的基本功能,感知、记忆、学习和决策等,向着强人工智能以及超级人工智能发展的话还有很长的一段路要走,中间有着巨大的鸿沟。

人工智能经历3起2落,现在是机器学习阶段,人工智能现在最热门的领域:机器学习,自然语言处理,图像,而在金融领域:智能投顾,高频交易;互联网领域:语音助手,机器翻译,文本智能识别,听歌识曲,刷脸解锁(以色列的一项技术),拍照优化,相册分类,影像处理,AR特效,影像内容审核及分类;智能规划决策:博弈论(囚徒困境);自动驾驶领域:感知-认知-决策-控制-执行;公共安全领域;教育领域;泛信息处理(百度和谷歌可以关键字检索速度很快,哈希算法);医疗健康领域;工业制造领域;零售领域;广告营销领域;交通出行领域;智能客服领域

一些大公司在人工智能领域的投入和研究对于推动人工智能的发展起到了很大的作用,最值得一提的就是谷歌。谷歌的免费搜索表面上是为了方便人们的查询,但这款搜索引擎推出的初衷就是为了帮助人工智能的深度学习,通过上亿的用户一次又一次地查询,来锻炼人工智能的学习能力,由于我的水平还很低,对于深度学习还不敢妄自揣测。但是,近年来谷歌公司在人工智能方面的突破一项接着一项,为人们熟知的便是智能汽车。不得不说,人工智能想要进一步发展,必须依靠这些大公司的研究和不断推广,由经济促创新。

第五篇:人工智能相关材料

应用:

个人助理(智能手机上的语音助理、语音输入、家庭管家和陪护机器人)产品举例:微软小冰、百度度秘、科大讯飞等、Amazon Echo、Google Home等

安防(智能监控、安保机器人)产品举例:商汤科技、格灵深瞳、神州云海

自驾领域(智能汽车、公共交通、快递用车、工业应用)产品举例:Google、Uber、特斯拉、亚马逊、奔驰、京东等

医疗健康(医疗健康的监测诊断、智能医疗设备)产品举例: Enlitic、Intuitive Sirgical、碳云智能、Promontory等

电商零售(仓储物流、智能导购和客服)产品举例:阿里、京东、亚马逊

金融(智能投顾、智能客服、安防监控、金融监管)产品举例:蚂蚁金服、交通银行、大华股份、kensho

教育(智能评测、个性化辅导、儿童陪伴)产品举例:学吧课堂、科大讯飞、云知声

发展方向思路:

(一)人工智能新兴产业

这部分主要任务是进行人工智能前沿技术布局,推动核心技术产业化,并为人工智能产业发展奠定公共基础。本部分涉及核心技术研发与产业化、基础资源公共服务平台两大工程。其中,核心技术研发与产业化工程主要涉及三个方面的技术。一是人工智能基础理论,包括深度学习、类脑智能等。二是人工智能共性技术,包括人工智能领域的芯片、传感器、操作系统、存储系统、高端服务器、关键网络设备、网络安全技术设备、中间件等基础软硬件技术。三是人工智能应用技术,包括基于人工智能的计算机视听觉、生物特征识别、复杂环境识别、新型人机交互、自然语言理解、机器翻译、智能决策控制、网络安全等。基础资源公共服务平台工程主要涉及四个方面的建设内容。一是各种类型人工智能海量训练资源库和标准测试数据集建设,包括文献、语音、图像、视频、地图及行业应用数据等,这些数据集需要面向社会开放,为广大科研机构和企业进行人工智能研究和开发提供服务。二是基础资源服务平台建设,包括满足深度学习计算需求的新型计算集群共享平台、云端智能分析处理平台、算法与技术开放平台、智能系统安全情报共享平台等。三是类脑智能基础服务平台建设,要能够模拟真实脑神经系统的认知信息处理过程。四是产业公共服务平台建设,可以为人工智能创新创业提供相关研发工具、检验评测、安全、标准、知识产权、创业咨询等专业化服务。

(二)重点领域智能应用

这部分主要任务是加快人工智能技术的产业化进程,推动人工智能在家居、汽车、无人系统、安防、制造、教育、环境、交通、商业、健康医疗、网络安全、社会治理等重要领域开展试点,使得人工智能能够在第一时间转化为生产力并惠及民生。本部分以基础较好的智能家居、智能汽车、智能无人系统、智能安防等领域为主。智能家居示范工程主要支持利用健康医疗、智慧娱乐、家庭安全、环境监测、能源管理等应用技术,进行具有人工智能的酒店、办公楼、商场、社区、家庭等建设,提升百姓生活品质。智能汽车研发与产业化工程主要面向自动驾驶和安全驾驶,支持智能汽车芯片和车载智能操作系统、高精度地图及定位、智能感知、智能决策与控制等,支持智能汽车试点。智能无人系统应用工程主要面向无人机、无人船等无人设备,支持与人工智能相关的结构设计、智能材料、自动巡航、远程遥控、图像回传等技术研发,及其在物流、农业、测绘、电力巡线、安全巡逻、应急救援等重要行业领域的创新应用。智能安防推广工程主要面向与百姓安全息息相关的社会治安、工业安全以及火灾、有害气体、地震、疫情等问题,支持利用图像精准识别、生物特征识别、编码识别、智能感知等技术的研发和应用。

(三)智能化终端产品

这部分的主要任务是希望通过合适的终端,实现智能化生产和服务。本部分涉及三大工程。智能终端应用能力提成工程主要是面向具有一定智能计算能力的终端及附属应用,支持其在智能交互、智能翻译等云端协同方面及图像处理、操作系统基础软硬件方面进一步改进。智能可穿戴设备发展工程主要支持轻量级操作系统、低功耗高性能芯片、柔性显示、高密度储能、快速无线充电、虚拟现实和增强现实等关键技术的成果转化与应用。智能机器人研发与应用工程主要支持智能感知、模式识别、智能分析、智能控制等技术在机器人方面的研发和应用,包括生产用智能工业机器人,救灾救援、反恐防暴等特殊领域的智能特种机器人,医疗康复、教育娱乐、家庭服务等领域的智能服务机器人。

(四)标准体系和知识产权

目前人工智能标准领域还处于一片空白状态,关于人工智能的概念仍然没有达成一致意见,人工智能也还没有一个统一的技术体系架构,平台与应用之间的接口五花八门,而且基本上都是私有协议,网络、软硬件、数据、系统、测试评估等方面的研发、应用、服务也无章可循。这直接导致了人工智能领域进入门槛过高,无法形成良性发展的产业生态。因此,建设人工智能领域标准化体系,建立并完善基础共性、互联互通、行业应用、网络安全、隐私保护等技术标准,已经成为摆在眼前的现实问题。当然,标准化工作需要相关各方的积极参与,并积极开展国际合作,才能保证对人工智能产业发展的有效促进,推动标准走出去才能增强国际话语权。另一方面,在我们所处的这个全球经济一体化时代,专利已经成为发展的硬实力,必须要加快重点技术和应用领域的专利布局,同时加强专利合作,提高知识产权成果转化效率,积极防控专利风险,增强标准与专利政策的有效衔接,才能保证我国人工智能产业拥有强大的竞争力并得到持续健康发展。

政策:

2015年5月国务院在《中国制造2025》提出“加快发展智能制造装备和产品”,指出“组织研发具有深度感知、智慧决策、自动执行功能的高档数控机床、工业机器人、增材制造装备等智能制造装备以及智能化生产线,统筹布局和推动智能交通工具、智能工程机械、服务机器人、智能家电、智能照明电器、可穿戴设备等产品研发和产业化。”

2015年7月4日国务院在《国务院关于积极推进“互联网+”行动的知道意见》明确提出人工智能作为11个重点布局的领域之一,促进人工智能在智能家居、智能终端、智能汽车、机器人等领域的推广应用。

2016年1月国务院在《“十三五”国家科技创新规划》提出智能制造和机器人成为“科技创新2030项目”重大工程之一。

2016年3月18日国务院在《国民经济和社会发展第十三个五年规划纲要(草案)》提出人工智能概念进入“十三五”重大工程。

2016年5月18日国家发展改革委、科技部、工业和信息化部、中央网信办在《“互联网+”人工智能三年行动实施方案》明确了要培育发展人工智能新兴产业、推进重点领域智能产品创新、提升终端产品智能化水平、并且政府将在资金、标准体系、知识产权、人才培养、国际合作、组织实施等方面进行保障。

人工智能技术带来的产业影响

当前,人工智能技术对互联网行业产生的影响和变革主要有如下三个方面:

其一,在理论技术层面,人工智能技术为基于互联网和移动互联网等领域的创新应用,提供理论基础。例如,自动定理推理,为网络信息检索、问题求解、远程诊断等问题提供了自动求解方案;自然语言理解,为计算机人类语言理解提供理论和方法;数据挖掘为从数据库中挖掘有意义,提炼出具有必然性、蕴含本质规律的数据提供了规则、聚类等数据处理、建模、评估标准。

其二,在技术应用和创新层面,人工智能技术的发展,为未来ICT等网络技术的发展指引了方向。当前,以智能算法、深度学习、云计算为代表的大规模网络应用已经成为ICT产业的重要发展方向。各大互联网公司在深度学习领域在不断做积极探索,深度学习是机器学习研究中的一个重点关注领域,其研究侧重于建立、模拟人脑进行分析学习的神经网络。在创新方面,深度学习带来了机器学习的新浪潮,推动“大数据+深度模型+数据发现挖掘”时代的来临。人工智能技术与互联网的融合,是两个领域发展到一定阶段,探索创新的必然结果,深度学习为拥有强大计算能力和数据资源的互联网巨头公司带来下一次全面领跑的机会。例如,谷歌、百度在硅谷的研发实验室,在对深度学习、算法升级,对机器学习模仿人脑的智能活动,让机器像人脑一样识别图像、理解自然语言,解析网络内容之间关系做深度探索。百度语音和图像等相关网络产品应用的快速崛起,正是受益于对机器学习等领域的技术突破。

其三,在融合发展层面,人工智能技术的发展促进多种科学与网络技术的深度融合。从国际上看,人工智能技术在美国,欧洲和日本发展迅速,并且带动了多种信息科学领域的发展,信息学、控制学、仿生学、计算机学等领域的技术突破均被运用到人工智能应用中去。从技术发展脉络发展上,人工智能很多技术一直处于创新的前沿,未来会在很大程度上影响信息产业的发展方向。人工智能发展至今涉及到多个研究领域,研究方向包括符号计算、语言识别、模式识别和计算机视觉、机器翻译与机器学习、智能信息检索、问题求解与专家系统、逻辑推理与逻辑证明、自然语言处理等,逐渐成为更为广泛的智能科学学科。

新时期下面对人工智能快速发展对策:

在人工智能技术发展过程中,我们总体上应该贯彻落实创驱动发展战略,立足自主创新的同时,放眼国内国际两个大局技术发展情况,加强跟踪高新技术产业技术的发展态势调整产业结构,统筹全局发展,切实推进由技术革新到推进经济发展方式的转变,实现工业经济产型升级,同步大力支持我国人工智能相关研究和产业化工作。在具体工作上,我们应该采取以下策略:

一是要建立针对相关科研成果的产业追踪机制。针对国际国内相关企业和科研机构正在进行的相关科研活动进行动态追踪,对其科研成果在各行各业的信息化应用进行预研预判,为制定信息化发展相关政策规划提供线索和根据。

二是适时引导和推动人工智能相关产业领域的研发应用。加强对人工智能和人脑科学工业领域应用的深入调研分析,掌握工业机器人、新型计算产品、人工神经网络等的发展和应用现状,坚持应用牵引,整合产学研现有资源,形成一批人工智能关联技术的实验室和技术中心,推动人工智能关联技术在网络、通讯等行业快速发展的应用示范。

三是要加大对人工智能关联技术的资金支持力度,引导人工智能关联技术向通用技术领域的演进和转化。

未来人工智能技术将进一步推动关联技术和新兴科技、新兴产业的深度融合,推动新一轮的信息技术革命,其人工智能技术将成为我国经济结构转型升级的新支点。

下载人工智能学习word格式文档
下载人工智能学习.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    对人工智能学习的感想

    学校:苏州科技学院 学院:电子信息工程 班级:电科0812班 姓名:钟建峰 学号:0820108224 谈谈人工智能的学习感想 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开......

    人工智能学习资料(优秀范文五篇)

    我经常在 TopLanguage 讨论组上推荐一些书籍,也经常问里面的牛人们搜罗一些有关的资料,人工智能、机器学习、自然语言处理、知识发现(特别地,数据挖掘)、信息检索 这些无疑是 CS......

    《人工智能》教学大纲

    人工智能原理及其应用 一、 说明 (一)课程性质 随着信息社会和知识经济时代的来临,信息和知识已成为人们的一个热门话题。然而,在这个话题的背后还蕴含着另外一个更深层的问题......

    人工智能心得体会

    人工智能心得体会 人工智能心得体会1 李开复号称最会说话的计算机男神,曾经是微软谷歌的副掌门,现在是创新工厂的大bo,在微博有超过半个亿粉丝。第一此认识到他和人工智能这个......

    人工智能观后感

    人工智能观后感 刚才看了 让我对斯皮尔博格这位大导演更加钦佩 不想深层归类 什么 科幻伦理灾难 也不懂得 或许 更愿意相信 这是真的 或者再实际一点 这是一个寓言 影片中......

    人工智能辩论

    人工智能 正方一辩:人工智能是基于数学、逻辑学、统计学之上,通过经验积累得到学习能力,从而协助人们进行某项工作的操作系统。人工智能与人类智能有着本质区别和根本界限。人......

    人工智能(推荐阅读)

    人工智能 课程设计中期报告 题目:一字棋游戏 班级:计算机技术 2014级 成员:樊祥锰(2014704101) 段绍鹏(2014704100) 范程斌(2014704102) 指导老师:张 云 目录 第一章 项目建议书 1.1......

    人工智能理论

    人工智能理论 模块化开发,划分层次模块,提出理论,论证理论是否可行,编码实现。 电影《异次元骇客》对计算机从业者的启发: 1、 建造以三维数据(x,y,z)为基础的虚拟世界,并为每个......