专题:等比数列性质练习题
-
等比数列的性质练习题(推荐阅读)
考点1等比数列的通项与前n项和题型1已知等比数列的某些项,求某项【例1】已知an为等比数列,a22,a6162,则a10题型2 已知前n项和Sn及其某项,求项数.【例2】⑴已知Sn为等比数列an前n
-
等比数列性质(本站推荐)
等比数列
1,在等比数列an中,已知a3a636,a4a718,an
12
,求n。
2,在1与100之间插入n个正数,使这n个数成等比数列,求插入的n个数的积。 3,在等比数列an中,若a22,a6162,求a10。
4,在等比 -
等比数列练习题(合集五篇)
等 比 数 列1.公差不为0的等差数列{an}中,a2,a3,a6依次成等比数列,则公比等于. 2. 等比数列为a,2a+2,3a+3,…,第四项为3.在等比数列an中,a9a10aa0,a19a20b,则a99a100等于a3a4a2,a3,a1aa
-
(经典整理)等差、等比数列的性质
等差、等比数列的性质一:考试要求1、理解数列的概念、2、了解数列通项公式的意义3、了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项 二:知识归纳(一)主要
-
等差、等比数列性质类比
等差、等比数列知识点一、等差数列:1.等差数列的证明方法:1. 定义法:2.等差中项:对于数列则{an}为等差数列。 2.等差数列的通项公式:an,若2an1anan2ana1(n1)d------该公式整理后是
-
讲等比数列性质学案doc
2.4等比数列性质学习目标:1、理解等比数列的主要性质, 能推导证明有关性质; 2、能运用有关性质进行计算和证明. 【温故知新】1.已知数列{an}的前4项为2,6,18,54,则它的一个通项
-
等比数列的性质总结
等比数列性质1. 等比数列的定义:2. 通项公式: ana1qn1anan1qq0n2,且nN*,q称为公比a1qqABnna1q0,AB0,首项:a1;公比:q推广:anamqnm,从而得qnm3. 等比中项anam或qn(1)如果a,A,b成等比数列,
-
等比数列的性质教案
等比数列的性质(第一课时) 惠来一中方汉娇 一、【教学目标】 1.结合等比数列的性质,引导学生类比猜想等比数列的几个重要性质,并能初步应用等比数列性质解决相关的简单问题; 如:
-
等差等比数列综合练习题
等差数列等比数列综合练习题 一.选择题 1. 已知an1an30,则数列an是 ( ) A. 递增数列 B. 递减数列 C. 常数列 D. 摆动数列 2.等比数列{an}中,首项a18,公比q,那么它的前5项的和S5的值
-
等差数列与等比数列的性质
第24课 等差数列与等比数列的性质●考试目标主词填空1.等差数列的性质.①等差数列递增的充要条件是其公差大于0,②在有穷等差数列中,与首末两端距离相等的和相等.即a1+an=a2
-
等比数列的性质及应用教案
一、教学目标: 1.知识与技能:理解并掌握等比数列的性质并且能够初步应用。 2.过程与方法:通过观察、类比、猜测等推理方法,提高我们分析、综合、抽象、 概括等逻辑思
-
等比数列性质教学反思(精选5篇)
等比数列性质的教学反思 一. 对本节课的课堂教学的理解 (1) 知识与技能 对比等差数列建立等比数列模型,加强等比数列概念的理解和认识体验数学中类比的重要思想方法。 (2) 过程与
-
等差与等比数列综合专题练习题
1.数列{an}是等差数列,若
值时,n=A.11a<-1,且它的前n项和Sn有最大值,那么当Sn取得最小正a10anB.17C.19D.21 2. 已知公差大于0的等差数列{
求数列{an}的通项公式an. }满足a2a4+a4a6+a6a2=1,a -
不等式性质练习题
﹤不等式性质
一、选择题
1、已知ab0,下列不等式恒成立的是
A.a2
b2
B.ab1C.1111
abD.ab2、已知a0,b1,下列不等式恒成立的是
A.a
ababB.aaaaaa
2 b2baC.bb2aD.bab
3、若a,b,c,d -
类比探究等差数列和等比数列的性质
类比探究等差数列和等比数列的性质上海市桐柏高级中学李淑艳 马莉上海市普陀区教育学院刘达一、案例背景本课的教学内容是上海市高中课本《数学》(华东师范大学出版社)高中二
-
高三数学单元练习题:等比数列(Ⅲ)(推荐五篇)
高三数学单元练习题:等比数列(Ⅲ) 【说明】 本试卷满分100分,考试时间90分钟. 一、选择题(每小题6分,共42分) 1.不等式ax2+5x+c>0的解集为(,1132),那么a,c为( ) A.a=6,c=1 B.a=-6,c=-1 C
-
高三数学单元练习题:等比数列(Ⅱ)(精选5篇)
高三数学单元练习题:等比数列(Ⅱ) 【说明】 本试卷满分100分,考试时间90分钟. 一、选择题(每小题6分,共42分) 1.等差数列{an}前四项和为40,末四项和为72,所有项和为140,则该数列共有( )
-
一轮复习等差等比数列证明练习题
Fpg 1.已知数列an是首项为a1,公比q141の等比数列,bn23log1an 44(nN*),数列cn满足cnanbn. (1)求证:bn是等差数列; 2ana2,aa6a6(nN), n1nn2.数列满足1设cnlog5(an3). (Ⅰ)求证:cn是等比数列; *