专题:三角函数的值域解析
-
一类分式型三角函数值域的多角度求解
龙源期刊网 http://.cn
一类分式型三角函数值域的多角度求解 作者:舒飞跃
来源:《数理化学习·高一二版》2012年第12期
三角函数中经常遇到求形如“y=asinx+bcosx+cdsinx+ecos -
值域习题
定义域(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个
-
函数值域问题
努力今天成就明天 知识就是财富 求分式函数值域的几种方法 求分式函数值域的常见方法 1 用配方法求分式函数的值域 如果分式函数变形后可以转化为y配方,用直接法求得函数的值
-
分式函数值域解法
分式函数值域解法汇编甘肃省定西工贸中专文峰分校 张占荣函数既是中学数学各骨干知识的交汇点,是数学思想,数学方法应用的载体,是初等数学与高等数学的衔接点,还是中学数学联系
-
复数+平面向量+三角函数(解析版)(共5篇)
【高中文科数学专题复习之___】复数+平面向量+三角函数一、 要点梳理1、复数的有关概念(1)复数的概念形如a+bi(a,b∈R)的数叫做复数,其中a,b分别是它的实部和虚部。若b=0,则a+b
-
三角函数测验题
离婚协议书范本
男方:叶镇强,男,汉族,1981年8月9日生,住河源市紫金县紫城镇金富大楼B1501,身份证号码:***516
女方:黄凤华,女,汉族,1985年1月11日生,住河源市紫金县紫城镇金 -
三角函数专题学案(精选合集)
三角函数专题学案(2012)考纲要求:1、任意角的概念、弧度制(1)了解任意角的概念和弧度制的概念;(2)能进行弧度与角度的互化.2、三角函数(1)理解任意角的三角函数(正弦、余弦、正切)的定义
-
三角函数教案设计
第四章 三角函数总 第1教时 4.1-1角的概念的推广(1) 教学目的: 推广叫的概念,引入正角、负角、零角;象限角、坐标上的角的概念;终边相同角的表示方法。 让学生掌握用“旋转”定义
-
三角函数教案
三角函数 1教学目标 ⑴: 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形 ⑵: 通过综合运用勾股定理,直角三角形
-
余弦定理 三角函数(模版)
对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质——a^2 = b^2 + c^22·a·c·cosBc^2 = a^2
-
三角函数详解
2008.(本小题满分12分)已知函数f(x)2sinx4cosx42x4.(Ⅰ)求函数f(x)的最小正周期及最值;π,判断函数g(x)的奇偶性,并说明理由. 3x22sin2(Ⅱ)令g(x)fx解:(Ⅰ)f(x)sinx4)sinx2xπ2sin223x. f(x)
-
2011高考题--三角函数
北京15.(本小题共13分)已知函数f(x)4cosxsin(x(Ⅰ)求f(x)的最小正周期:,上的最大值和最小值。 646)1。(Ⅱ)求f(x)在区间全国5.设函数f(x)cosx(>0),将yf(x)的图像向右平移的图像与原图像
-
三角函数口诀
二、《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割中心记上数字1,连结顶点三角 -
数学三角函数
1.(2010·天津高考理科·T7)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2b2,sinCB,则A= ()(A)300(B)600(C)1200(D)15002.(2010·北京高考文科·T7)某班设计了一个八边形的班徽(如图),它由腰长为1,顶
-
高一数学函数值域解题技巧
一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方
-
用反函数法求值域
用反函数法求值域一、 反函数法
分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型
对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和 -
求函数值域的方法
求函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;
②逆求法(反求法):通过反解x,用y 来表示 ,再由 x的取值范围,通过解不等式,得出 y的取值范围;
④换元法:通过变量 -
《锐角三角函数》说课稿
《锐角三角函数》说课稿 元城初中 李先龙 一.知识技能: 1、通过复习进一步理解锐角三角形函数的概念,能熟练地应用sinA,cosA,tanA表示直角三角形中的两边的比,熟记30°,45°,60°角