专题:温州大学高等数学竞赛
-
大学 高等数学 竞赛训练 极限
大学生数学竞赛训练一(极限)一、计算解:因为原式又因为所以。二、计算解:因为所以。三、计算解:设,则因为,所以。四、计算解:因为,所以五、设数列定义如下证明:极限。证明:方法一、考虑
-
大学 高等数学 竞赛训练 试题
一、(本大题共4小题,每小题6分,共24分)计算下列各题(要求写出计算步骤)1)解:因为所以,原式2)设,求。解:因为…………所以。3)求,其中。解:4)求幂级数的和函数,并求级数的和。解:设,则有上式两边
-
大学 高等数学 竞赛训练 微分方程
大学生数学竞赛训练五—微分方程一、(15分)设函数在上可导,且,对任给的满足等式1)求导数;2)证明:当时,成立不等式:。解:1)设,则有当时有两边关于求导得解微分方程得由条件可得,因此2)当时,,所
-
大学 高等数学 竞赛训练 积分学
大学生数学竞赛训练三—积分学一、(15分)计算。解:原式二、(20分)设曲面和球面1)求位于内部的面积2)设,求位于内部的体积。解:1)解方程组得方法二、。2)此为旋转体的体积方法二、三、(15
-
大学 高等数学 竞赛训练 级数
大学生数学竞赛训练四—级数一、(20分)设1)证明:2)计算证明:1)设,因为所以,当时,为常数,即有(注意这里利用了极限)2)。二、(15分)设在点的一个邻域内有连续导数,且。证明:级数收敛,但级数发散。
-
温州大学第七届大学生电子设计竞赛
温州大学第七届大学生电子设计竞赛各位同学:
为促进我校电子类、计算机类、信息类、机电类等专业和课程建设,培养大学生的创新能力与协作精神,加强学生动手能力的培养和工程实 -
大学 高等数学 竞赛训练 导数、微分及其应用
导数、微分及其应用训练一、(15分)证明:多项式无实零点。证明:用反证法证明,设存在实根,则此根一定是负实根(因为当时,)。假设,则有。因为由此可得,但是,这是一个矛盾。所以多项式无实零
-
大一高等数学竞赛策划
大一高等数学竞赛策划一、 目的及意义
高等数学是理工科基础中的基础,也是学科建设的基础。与物理、物化、工
程力学、传输原理、电工学等几乎所有理工科课程有关。03级实践 -
工作总结 - 温州大学
余如英同志,国家二级心理咨询师。2009年硕士毕业进入温州大学,在学生处心理健康教育中心担任专职工作人员至今,主要负责心理健康教育心理咨询、宣传、新生普查、心理委员联合会
-
温州大学学刊
网络与教师教育科研能力提高 吴成业、吴理娒 (永嘉县乌牛镇横屿小学,永嘉县西溪乡瓯渠中学) 摘要: 网络技术的发展,使得教师教育科研能力有了新的发展渠道。网络在教师教育科研能
-
大学 高等数学 历年考题
一。偏导数的几何应用1.[2012]求曲面在点处的切平面和法线方程解令,则从而切点的法向量为从而切平面为法线方程为3、[07]曲线在点的切线方程为.4.[07](化工类做)在曲面上求出切
-
大学新生如何学好高等数学
大学新生可能对将要学习的高等数学产生畏惧心理,因为高等数学与初等数学相比,老师的授课方式和学生的 学习方法都发生了改变,如何帮助学生适应这些转变,提高学习效果,本人就这些
-
2013年高等数学竞赛结果通知 A
常州大学2012-2013年度数学竞赛获奖名单 本部 机类(高等数学A) 一等奖(共34人) 谢敬涛(信管101)刘浩浩(机械教改121) 陈圆圆(机制101) 夏阳春(热能122) 宗文浩(储运113) 周 伟(储
-
高等数学竞赛感想(共5则)
高等数学竞赛(微积分竞赛)参赛感言 数学思维是数学学科的重要组成部分,其变换的形式以及严谨的结构逻辑是数学之美上的一颗璀璨明珠。本文简单阐述我对数学以及微积分,这个数学
-
2014年高等数学竞赛——专题五不等式
专题五不等式1. 设f(x)在 [0, 1]上连续,非负,单调减。
2.f(x)dxaf(x)dx(0a1) 00a1
babf(x)dx 3. 设f(x)在[a,b]上连续,单调增。求证:xf(x)dxa2ab
4. 设f(x)在 [0, 1]上可导,且 -
温州大学商学院2012[推荐5篇]
第一期 青年创业成就未来 ——2012诺基亚青年就业创业大讲堂 2012年10月31日13点40分, “2012诺基亚青年就业创业大讲堂温州大学站”在北校信息楼报告厅举行。清华大学学生
-
2014温州审计知识竞赛试题
2014温州审计知识竞赛试题 一、单项选择题(共40题) 1、《中华人民共和国宪法》在什么时间规定设立国家审计机关?( ) A.1978年3月5日 B.1982年12月4日 C.1988年4月12日 D.1993年3
-
大学课件 高等数学期末复习资料
题号一二三四五六七八九总分得分一、单项选择题(15分,每小题3分)1、当时,下列函数为无穷小量的是(A)(B)(C)(D)2.函数在点处连续是函数在该点可导的(A)必要条件(B)充分条件(C)充要条件(D)既非充分